研究生: |
季鴻益 Ji, Hong-Yi |
---|---|
論文名稱: |
量子化學探討人工光合作用陰極 過渡金屬紫質催化還原CO2 Quantum Chemistry Studies on CO2 Reduction at the Transition Metal Porphyrin Catalyst in the Artificial Photosynthesis Cathode |
指導教授: |
洪哲文
Hong, Che-Wun |
口試委員: |
董瑞安
DOONG, RUEY-AN 李明蒼 Lee, Ming-Tsang 陳馨怡 Chen, Hsin-Yi 黃家宏 Huang, Chia-hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 量子化學 、人工光合作用 、二氧化碳催化還原 |
外文關鍵詞: | Quantum Chemistry, Artificial Photosynthesis, CO2 Reduction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用量子化學模擬探討人工光合作用中陰極催化二氧化碳
(CO2)還原成甲醇燃料的過程,希望能詳盡了解整個反應步驟,並藉由建構
完整的反應流程求得當中各步驟的反應速率常數,並探尋過程中會遇到的
問題,找出可能的改善方案。選用的陰極材料是中心原子為鈷的紫質(CoPP),
此類摻有過渡金屬的紫質化合物已被廣泛運用於二氧化碳還原,其不僅結
構穩定,可最大化實現金屬原子利用率,且產物選擇性佳;本研究主要使用
工具為計算量子化學的 Gaussian09,由密度泛函理論評估各反應勢能函數;
次要的模擬軟體則是 Adsorption Locator,後者基於蒙地卡羅理論快速估計
各反應物空間位置。
本研究首先透過蒙地卡羅法預測加入的二氧化碳分子與氫離子(H+)的
可能位置,透過最低能量做結構最佳化、過渡態計算、內反應座標等一系列
流程逐步建立可能的反應路徑,藉此瞭解 CoPP 催化二氧化碳還原的反應發
生步驟及計算各步驟反應速率常數,模擬結果催化劑CoPP 的最佳化結構誤
差與實驗值相比平均約為 1.84%,最大不超過5%;二氧化碳在催化初期會
被折彎成具有120.82o 的結構,對於降低結構穩定性並與氫離子生成COOH*
增加催化發生的可能性有重要的影響;最終找尋到了催化還原二氧化碳並
析出最終產物甲醇的反應路徑,全部過程需提供 1.33eV 的能量,且整個反
應過程能量共下降了 65.80eV 的能量;在形成CO*中間體後的接續步驟中,
找到了兩個可能的過渡態結構與反應路徑,依據∆𝐺‡與速率常數來評估出形
成 CHO*中間體為較可能的反應路徑;整個模擬中反應速率較低的步驟出現
在第二步形成CO*中間體並釋出一個水分子的過程(k=4.226×10-6s-1)。
本研究結論為尋找有效的助催化劑提升形成 CO*中間體的反應速率將
可大幅提升催化的效率,並可與其他過渡金屬官能化紫質比較找出效率最
佳的金屬原子與觸媒框架,此外改善模擬流程中的溶劑效應有助於更貼近
實際的實驗過程。
This thesis aims to use quantum simulation to investigate the process of CO2 reduction to Methanol fuel at the cathode in the artificial photosynthesis. The selected cathode catalyst is Cobalt Porphyrin(CoPP). The main simulation software uses Gaussian09, which is designed according to the computational quantum chemistry. The potential energy function of each reaction is evaluated through the density functional theory. In addition, the secondary simulation software is Adsorption Locator, which rapidly estimates the spatial position of each reactant based on the Monte Carlo algorithm.
Firstly, the Monte Carlo method was programmed to predict possible
positions of the added carbon dioxide molecules and those hydrogen ions (H+) from the anode. In order to calculate the reaction rate constant of each step, the possible reaction pathways are established through a series of processes such as the lowest energy for structural optimization, transition state calculations, and internal reaction coordinates step by step. The geometric error of the CoPP model is 1.84% on average compared with the experimental results. In addition, CO2 was bent into a structure with an angle of 120.82o at the initial stage of catalysis, which
has an important influence on reducing structural stability and generating COOH* with hydrogen ions to increase the possibility of the catalytic reaction. The entire process is exergonic, when producing methanol, 1.333eV is required and 65.80eV will be released. In the subsequent steps after the formation of the CO*
intermediate, two possible transition state structures and reaction paths were found. According to ∆𝐺‡ and the rate constant, the formation of the CHO* intermediate was evaluated as a more likely reaction pathway. In the whole simulation, the rate-controlled step with the lowest reaction rate occurred at the
second step of forming a CO* intermediate and producing a water molecule (k=4.226×10-6 s-1).
[1]P. Friedlingstein, et al., “Global Carbon Budget 2019” Earth Syst. Sci. Data, 11, 1783–1838, 2019
[2]C. L. Wang, “First Principles on CO2 Reduction to Methanol at Metal Organic Frameworks in Artificial Photosynthesis Cathode”, 2019.
[3]A. Kudo, and Y. Miseki, “Heterogeneous Photocatalyst Materials for Water Splitting, ” Chem. Soc. Rev., 38, pp 253-278, 2009.
[4]M. Jurow, A. E. Schuckman, J. D. Batteas, and C. M. Drain, “Porphyrins as Molecular Electronic Components of Functional Devices,” Coord Chem Rev, 254, pp 2297-2310, 2010.
[5]Y. Nakamura N. Aratani, H. Shinokubo, A.Takagi, T. Kawai, T. Matsumoto, Z. S. Yoon, D. Y. Kim, T. K. Ahn, D. Kim, A. Muranaka, N. Kobayashi, and A.Osuka, “A Directly Fused Tetrameric Porphyrin Sheet and Its Anomalous Electronic Properties That Arise from the Planar Cyclooctatetraene Core,” J. Am. Chem. Soc., 128, pp 4119-4127, 2006.
[6]C. Li, J. Ly, B. Lei, B. Fan, D. Zhang, J. Han, M. Meyyappan, M. Thompson, and C. Zhou, “Data Storage Studies on Nanowire Transistors with Self-Assembled Porphyrin Molecules,” J. Phys. Chem. B, 108, pp 9646-9649, 2004.
[7]G. Sedghi, K. Sawada, L. J. Esdaile, M. Hoffmann, H. L. Anderson, D. Bethell, W. Haiss, S. J. Higgins, and R. J. Nichols, “Single Molecule Conductance of Porphyrin Wires with Ultralow Attenuation,” J. Am. Chem. Soc., 130, pp 8582-8583, 2008.
[8]B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, “Photochemical and Photoelectrochemical Reduction of CO2,” Annu. Rev. Phys. Chem., 63, pp 541-569, 2012.
[9]E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, “Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels,” Chem. Soc. Rev., 38, pp 89-99, 2009.
[10]Nation Oceanic and Atmospheric Administration Website
(https://www.esrl.noaa.gov/gmd/ccgg/trend).
[11]S. Meshitsuka, M. Ichikawa, and K. Tamaru, “Electrocatalysis by Metal Phthalocyanines in the Reduction of Carbon Dioxide,” J. C. S. Chem. Comm., 5, pp 158-159, 1974.
[12]B. J. Fisher, and R. Eisenberg, “Electrocatalytic Reduction of Carbon Dioxide by Using Macrocycles of Nickel and Cobalt,” J. Am. Chem. Soc., 102, pp 7361-7363, 1980.
[13]C. G. Margarit, C. Schnedermann, N. G. Asimow, and D. G. Nocera, “Carbon Dioxide Reduction by Iron Hangman Porphyrins,” Organometallics, 38, pp 1219-1123, 2018.
[14]Y. Donga, R. Nie, J. Wang, X. Yu, P. Tu, J.Chen, and H. Jing, “Photoelectrocatalytic CO2 Reduction Based on Metalloporphyrin-Modified TiO2 Photocathode,” Chinese J. Catal., 40, pp 1222-1230, 2019.
[15]J. H. Liu, L. M. Yang, C. Zou, and E. Ganz, “Electrocatalytic Reduction of CO2 by Two-Dimensional Transition Metal Porphyrin Sheets,” J. Mater. Chem. A, 7, pp 11944–11952, 2019.
[16]B. Kumar, J. P. Brian, V. Atla, S. Kumari, K. A. Bertram, R. T. White, and J. M. Spurgeon, “New Trends in the Development of Heterogeneous Catalysts for Electrochemical CO2 Reduction,” Catal. Today, 270, pp 19-30, 2016.
[17]S. Taguchi, and A.Aramata, “Surface Structure Sensitive Reduced CO2 Formation on Pt Single Crystal Electrodes in Sulfuric Acid Solution,” Electrochim. Acta, 39, pp 2533-2537, 1994.
[18]N. Sonoyama, M. Kirii, and T. Sakata, “Electrochemical reduction of CO2 at Metal-Porphyrin Supported Gas Diffusion Electrodes Under High Pressure CO2,” Electrochem Commun, 1, pp 213-216, 1999.
[19]I. Nielsen, and K. Leung, “Cobalt-Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water. 1. A Density Functional Study of Intermediates,” J. Phys. Chem. A, 114, pp 10174-10184, 2010.
[20]R. Li, W. Zhang, and K. Zhou, “Metal-Organic‐Framework‐Based Catalysts for Photoreduction of CO2,” Adv. Mater., 30, 1705512, 2018.
[21]J. G. Santaclara, F. Kapteijn, J. Gascon and M. A. van der Veen, “Understanding metal–organic frameworks for photocatalytic solar fuel production,” CrystEngComm, 19, pp 4118-4125, 2017.
[22]National Aeronautics and Space Administration Website
(https://climate.nasa.gov/vital-signs/global-temperature/).
[23]H. Haberl, T. Beringer, S. C. Bhattacharya, K. H. Erb and M. Hoogwijk, “The global technical potential of bio-energy in 2050 considering sustainability constraints,” Curr Opin Environ Sustain, 2, pp 394-403, 2010.
[24]G. Zhu, Y. Li, H. Zhu, H. Su, S. H. Chan, and Q. Sun, “Curvature Dependent Selectivity of CO Electrocatalytic Reduction on Cobalt Porphyrin Nanotubes,” ACS Catal., 6, pp 6294-6301, 2016.
[25]A. S. Varela, N. R. Sahraie, J. Steinberg, W. Ju, H. Oh, and P. Strasser, “Metal- Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons,” Angew. Chem. Int. Ed., 127, pp 10908-10912, 2015.
[26]H. Sun, “COMPASS: An ab Initio Forced-Field Optimized for Condensed-Phase Applications–Overview with Details on Alkane and Benzene Compounds,” J. Phys. Chem. B, 102, pp 7338-7364, 1998.
[27]S. Ulam, and N. Metropolis, “The Monte Carlo Method,” J Am Stat Assoc, 44, pp 335-341, 1949.
[28]S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, 220, pp 671-680, 1983.
[29]A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Phys. Rev. A, 38, pp 3098, 1988.
[30]A. D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys., 98, pp 5648-5652, 1993.
[31]C. Lee, W. Yang, and R. G. Parr, “Development of The Colle-Salvetti Correlation-Energy Formula Into a Functional of The Electron Density,” Phys. Rev. B, 37, pp 785, 1988.
[32]P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” J. Phys. Chem., 98, pp 11623-11627, 1994.
[33]A. C. Hurley, L. J. John and J. A. Pople, “The Molecular Orbital Theory of Chemical Valency XVI. A Theory of Paired-Electrons in Polyatomic Molecules,” Proc. Math. Phys. Eng. Sci., 220, pp 446-455, 1953.
[34]V. Aquilanti, K. C. Mundim, M. Elango, S. Kleijn, T. Kasai, “Temperature Dependence of Chemical and Biophysical Rate Processes: Phenomenological Approach to Deviations from Arrhenius Law,” Chem. Phys. Lett., 498, pp 209-213, 2010.
[35]H. B. Schlegel, “Geometry Optimization on Potential Energy Surfaces,” Modern Electronic Structure Theory: Part I., pp 459-500, 1995.
[36]H. Eyring, “The Activated Complex and the Absolute Rate of Chemical Reactions,” Chem. Rev., 17, pp 65-77, 1935.
[37]G. Lente, I. Fábián and A. J. Poë, “A Common Misconception about the Eyring Equation,” New J. Chem., 29, pp 759-760, 2005.
[38]H. Eyring, “Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates,” J. Chem. Phys., 4, pp 283-291, 1936.
[39]V. H. Carvalho-Silva, V. Aquilanti, H. C. B. de Oliveira, and K. C. Mundim, “Deformed Transition-State Theory: Deviation from Arrhenius Behavior and Application to Bimolecular Hydrogen Transfer Reaction Rates in the Tunneling Regime,” J. Comput. Chem., 38, pp 178-188, 2017.
[40]M. Mananghaya, “Hydrogen Adsorption of Novel N-Doped Carbon Nanotubes functionalized With Scandium,” International Journal of Hydrogen Energy, 40, pp 9352-9358, 2015.
[41]K. Fukui, “A Formulation of The Reaction Coordinate,” J. Phys. Chem., 74, pp 4161-4163, 1970.
[42]K. Ishida, K. Morokuma, and A. Komornicki, “The Intrinsic Reaction Coordinate. An Ab Initio Calculation for HNC→HCN and H-+CH4→CH4+H-,” J. Chem. Phys., 66, pp 2153-2156, 1977.
[43]C. Gonzalez, and H. B. Schlegel, “An Improved Algorithm for Reaction Path Following,” J. Chem. Phys., 90, pp 2154-2161, 1989.
[44]Ju, Wen, et al. "Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2." Nat. commun., 8, pp 1-9, 2017.
[45]J. Shen, M. J. Kolb, A. J. Göttle, and Marc T. M. Koper, “DFT Study on the Mechanism of the Electrochemical Reduction of CO2 Catalyzed by Cobalt Porphyrins,” J. Phys. Chem. C, 120, pp 15714-15721, 2016.
[46]L. C. Akkermans, N. A. Spenley, and S. H. Robertson, “Monte Carlo Methods in Material A,” Mol Simul, 39, pp 1153-1164, 2013.
[47]Royal Society of Chemistry Database: ChemSpider (http://www.chemspider.com/)
[48]J. Resasco, Chen. L. D., E. Clarck, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, and A. T. Bell, “Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide,” J. Am. Chem. Soc., 139, pp 11277-11287, 2017.