研究生: |
黃詠歆 Huang, Yung-Hsin |
---|---|
論文名稱: |
二維二硫化鉬場效電晶體生醫感測器用於高靈敏檢測心肌肌鈣蛋白I之研究 The Study of Two-Dimensional MoS₂-Based Field Effect Transistor Biosensor for Highly Sensitive Detection of Cardiac Troponin I |
指導教授: |
劉耕谷
Liu, Keng-Ku |
口試委員: |
蘇清源
Su, Ching-Yuan 林御專 Lin, Yu-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 二維二硫化鉬 、生醫感測器 、心肌肌鈣蛋白I 、高靈敏性 、表面電漿子奈米材料 |
外文關鍵詞: | Two-dimensional MoS₂, Biomedical sensor, Cardiac Troponin I, High sensitivity, Surface plasmonic nanomaterials |
相關次數: | 點閱:57 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心血管疾病為全球死因之首,而其中急性心肌梗塞 (Acute myocardial infarction , AMI ) 最為難以預測且致命。近年來大眾對於預防醫學的觀念逐漸興盛,因此疾病突發前的預防檢測就相當重要,本研究旨在製作出用於靈敏檢測急性心肌梗塞中心血管生物標誌物「心肌肌鈣蛋白I」(Cardiac Troponin I , cTnI) 的生醫感測器。
近年來,隨著二維材料的發展,越來越多新興的二維材料受到半導體產業的關注。二維材料具有高導電性、高強度和良好的電化學性質等優點,不僅在半導體產業受到關注,還在生醫感測領域有所應用。在眾多二維材料中,二硫化鉬(MoS₂)是最受關注的材料之一,因其穩定性、優良的電學和光學特性以及高載子遷移率,適合用於生醫感測器元件的開發,可為生醫感測領域帶來良好的發展。
本研究所開發的生醫感測器元件,是先在二氧化矽基板上生長連續且大面積的二維MoS₂薄膜並對其進行物理、光學和電學特性等方面的分析研究。隨後,對二維MoS₂薄膜進行元件的圖形化設計。為了提升檢測靈敏度,我們選擇在二維MoS₂元件上加入表面電漿子奈米材料 (Yolk-shell AuNRs@Au/Ag)。表面電漿子奈米材料能有效提升整體比表面積,有助於後續抗體的修飾,同時也能增強二維MoS₂生醫感測器元件的導電性。,進一步降低其檢測極限。
本研究的目標在於開發一種非侵入式的生醫感測晶片,用於檢測急性心肌梗塞中代表性的生物標誌物「心肌肌鈣蛋白I」(Cardiac Troponin I , cTnI),利用場效電晶體元件的優良電學特性變化進行檢測。研究結果表明,在檢測cTnI方面取得了良好的靈敏度和特異性,並實現了最低檢測極限10 pg/mL。我們希望這項開發能夠在預防突發性心臟疾病方面發揮作用,並為生醫感測領域帶來更多的應用價值。
Cardiovascular diseases are the leading cause of mortality worldwide, with Acute myocardial infarction (AMI) being particularly difficult to predict and deadly. In recent years, there has been a growing interest in preventive medicine, underscoring the importance of pre-symptomatic detection of diseases. This study aims to develop a non-invasive biomedical sensor for the sensitive detection of the cardiovascular biomarker "Cardiac Troponin I" (cTnI) associated with AMI.
With the advancement of two-dimensional materials in recent years, there has been increasing attention in both the semiconductor industry and the biomedical sensing field. Among numerous two-dimensional materials, molybdenum disulfide (MoS₂) stands out due to its stability, excellent electrical and optical properties, and high carrier mobility, making it suitable for the development of biomedical sensor devices and contributing to the advancement of biomedical sensing technology.
The developed biomedical sensor in this study involves the growth of continuous and large-area two-dimensional MoS₂ thin films on silicon dioxide substrates, followed by a comprehensive analysis of their physical, optical, and electrical properties. Subsequently, the design of the MoS₂ thin film devices was carried out. To enhance detection sensitivity, surface plasmon nanomaterials ( Yolk-shell AuNRs@Au/Ag ) were incorporated into the MoS₂ devices. Plasmonic nanomaterials can effectively enhance the overall specific surface area, facilitating subsequent antibody functionalization while also improving the conductivity of two-dimensional MoS₂ biosensor devices, further lowering their detection limit.
The objective of this study is to develop a non-invasive biomedical sensing chip for the detection of the representative biomarker cTnI in AMI, utilizing the excellent electrical properties variation of field-effect transistor devices for detection. The results demonstrate good sensitivity and specificity in detecting cTnI, achieving a detection limit 10 pg/mL. It is hoped that this development will contribute to the prevention of sudden cardiovascular diseases and further enrich the applications of biomedical sensing technology.
1. Bergmark, B.A., et al., Acute coronary syndromes. The Lancet, 2022. 399(10332): p. 1347-1358.
2. Xia, F., et al., Two-dimensional material nanophotonics. Nature Photonics, 2014. 8(12): p. 899-907.
3. Khan, R., et al., Two-dimensional nanostructures for electrochemical biosensor. Sensors, 2021. 21(10): p. 3369.
4. Sarkar, D., et al., MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano, 2014. 8(4): p. 3992-4003.
5. Chan, D. and L.L. Ng, Biomarkers in acute myocardial infarction. BMC Medicine, 2010. 8(1): p. 34.
6. Su, S., et al., Two-dimensional nanomaterials for biosensing applications. TrAC Trends in Analytical Chemistry, 2019. 119: p. 115610.
7. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013. 5(4): p. 263-275.
8. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.
9. Han, S.A., R. Bhatia, and S.-W. Kim, Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2015. 2(1): p. 17.
10. Jianghao, W., L. Guangshe, and L. Liping, Synthesis Strategies about 2D Materials, in Two-dimensional Materials, N. Pramoda Kumar, Editor. 2016, IntechOpen: Rijeka. p. Ch. 1.
11. Yuan, S.-J., et al., Biomass-Derived Carbonaceous Materials with Graphene/Graphene-Like Structures: Definition, Classification, and Environmental Applications. Environmental Science & Technology, 2023. 57(45): p. 17169-17177.
12. Wu, Y., et al., Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing. Nano Letters, 2022. 22(8): p. 3307-3316.
13. Geim, A.K., Graphene: Status and Prospects. Science, 2009. 324(5934): p. 1530-1534.
14. Novoselov, K.S., et al., Electronic properties of graphene. physica status solidi (b), 2007. 244(11): p. 4106-4111.
15. Tao, L., et al., Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 2015. 10(3): p. 227-231.
16. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
17. Samy, O., et al. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals, 2021. 11.
18. Lu, N., et al., MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. Nanoscale, 2014. 6(5): p. 2879-2886.
19. Fathi-Hafshejani, P., et al., Two-Dimensional-Material-Based Field-Effect Transistor Biosensor for Detecting COVID-19 Virus (SARS-CoV-2). ACS Nano, 2021. 15(7): p. 11461-11469.
20. Zhang, X., et al., Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 2018. 47(9): p. 3301-3338.
21. Zhang, Y., et al. Bio-Separated and Gate-Free 2D MoS2 Biosensor Array for Ultrasensitive Detection of BRCA1. Nanomaterials, 2021. 11.
22. Theyagarajan, K. and Y.-J. Kim Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. Biosensors, 2023. 13.
23. Homsi, R., et al., Memristive Biosensors for Cancer Biomarkers Detection: A Review. IEEE Access, 2023. 11: p. 19347-19361.
24. Chanarsa, S., J. Jakmunee, and K. Ounnunkad, A sandwich-like configuration with a signal amplification strategy using a methylene blue/aptamer complex on a heterojunction 2D MoSe2/2D WSe2 electrode: Toward a portable and sensitive electrochemical alpha-fetoprotein immunoassay. Frontiers in Cellular and Infection Microbiology, 2022. 12.
25. Li, H., et al., Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chemical Reviews, 2018. 118(13): p. 6134-6150.
26. Liu, Y., et al., Layer-by-Layer Thinning of MoS2 by Plasma. ACS Nano, 2013. 7(5): p. 4202-4209.
27. Lee, H.S., et al., Metal Semiconductor Field-Effect Transistor with MoS2/Conducting NiOx van der Waals Schottky Interface for Intrinsic High Mobility and Photoswitching Speed. ACS Nano, 2015. 9(8): p. 8312-8320.
28. Yang, S.-T., et al., Submicron Memtransistors Made from Monocrystalline Molybdenum Disulfide. ACS Nano, 2024. 18(9): p. 6936-6945.
29. Li, L., Experimental Basics of Surface Plasmon Polaritons, in Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton, L. Li, Editor. 2017, Springer Singapore: Singapore. p. 7-32.
30. Aizpurua, J. and R. Hillenbrand, Localized Surface Plasmons: Basics and Applications in Field-Enhanced Spectroscopy, in Plasmonics: From Basics to Advanced Topics, S. Enoch and N. Bonod, Editors. 2012, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 151-176.
31. Tay, L.-L., Surface Plasmons, in Encyclopedia of Color Science and Technology, M.R. Luo, Editor. 2016, Springer New York: New York, NY. p. 1186-1195.
32. Li, Y., et al. Silver-Based Surface Plasmon Sensors: Fabrication and Applications. International Journal of Molecular Sciences, 2023. 24.
33. Shi, H., et al., Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications. Nanoscale Advances, 2021. 3(15): p. 4349-4369.
34. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nature Materials, 2010. 9(3): p. 205-213.
35. Gao, C., et al., Fully Alloyed Ag/Au Nanospheres: Combining the Plasmonic Property of Ag with the Stability of Au. Journal of the American Chemical Society, 2014. 136(20): p. 7474-7479.
36. Liu, K.-K., et al., Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots. Analyst, 2017. 142(23): p. 4536-4543.
37. Qi, Y., et al., Tuning the surface enhanced Raman scattering performance of anisotropic Au core−Ag shell hetero-nanostructure: The effect of core geometry. Journal of Alloys and Compounds, 2019. 776: p. 934-947.
38. Austin, L.A., B. Kang, and M.A. El-Sayed, Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review. Nano Today, 2015. 10(5): p. 542-558.
39. Liu, J., et al., Ultrasensitive Monolayer MoS2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Letters, 2019. 19(3): p. 1437-1444.
40. Chaulin, A.M., Cardiac Troponins Metabolism: From Biochemical Mechanisms to Clinical Practice (Literature Review). International Journal of Molecular Sciences, 2021. 22(20): p. 10928.
41. Tiwari, R.P., et al., Cardiac Troponins I and T: Molecular Markers for Early Diagnosis, Prognosis, and Accurate Triaging of Patients with Acute Myocardial Infarction. Molecular Diagnosis & Therapy, 2012. 16(6): p. 371-381.
42. Regan, B., R. O’Kennedy, and D. Collins Point-of-Care Compatibility of Ultra-Sensitive Detection Techniques for the Cardiac Biomarker Troponin I—Challenges and Potential Value. Biosensors, 2018. 8.
43. Chen, F., et al., Fe(3)O(4)@PDA immune probe-based signal amplification in surface plasmon resonance (SPR) biosensing of human cardiac troponin I. Colloids Surf B Biointerfaces, 2019. 177: p. 105-111.
44. Han, G.-R., et al., Deep Learning-Enhanced Paper-Based Vertical Flow Assay for High-Sensitivity Troponin Detection Using Nanoparticle Amplification. ACS Nano, 2024. 18(41): p. 27933-27948.
45. Mirzaeizadeh, Z., et al., Smart early diagnosis of acute myocardial infarction: a ZIF-based nanofluorescence lateral flow immunoassay for point-of-care detection of cTnI. Materials Advances, 2025.
46. Hui, Y., et al. A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I. Chemosensors, 2024. 12.
47. Goswami, P.P., et al., Near perfect classification of cardiac biomarker Troponin-I in human serum assisted by SnS2-CNT composite, explainable ML, and operating-voltage-selection-algorithm. Biosensors and Bioelectronics, 2023. 220: p. 114915.
48. Lee, J., et al., Sensitive and Simultaneous Detection of Cardiac Markers in Human Serum Using Surface Acoustic Wave Immunosensor. Analytical Chemistry, 2011. 83(22): p. 8629-8635.
49. Wang, W., et al., Investigation of the Growth Process of Continuous Monolayer MoS2 Films Prepared by Chemical Vapor Deposition. Journal of Electronic Materials, 2018. 47(9): p. 5509-5517.
50. Huang, X., S. Neretina, and M.A. El-Sayed, Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Advanced Materials, 2009. 21(48): p. 4880-4910.
51. Orendorff, C.J. and C.J. Murphy, Quantitation of Metal Content in the Silver-Assisted Growth of Gold Nanorods. The Journal of Physical Chemistry B, 2006. 110(9): p. 3990-3994.
52. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
53. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Phys Rev Lett, 1986. 56(9): p. 930-933.
54. Möller, C., et al., Tapping-Mode Atomic Force Microscopy Produces Faithful High-Resolution Images of Protein Surfaces. Biophysical Journal, 1999. 77(2): p. 1150-1158.
55. Paidi, H.K., R. Mudunuri, and D.J. Babu, Exploring MoS2 Growth: A Comparative Study of Atmospheric and Low-Pressure CVD. Langmuir, 2024. 40(48): p. 25648-25656.
56. Nan, H., et al., Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding. ACS Nano, 2014. 8(6): p. 5738-5745.
57. Hinman, J.G., et al., Oxidation State of Capping Agent Affects Spatial Reactivity on Gold Nanorods. Journal of the American Chemical Society, 2017. 139(29): p. 9851-9854.
58. Feng, L., et al., Preparation of gold nanorods with different aspect ratio and the optical response to solution refractive index. Journal of Experimental Nanoscience, 2015. 10(4): p. 258-267.
59. Peña-Rodríguez, O., et al., Au@Ag Core–Shell Nanorods Support Plasmonic Fano Resonances. Scientific Reports, 2020. 10(1): p. 5921.
60. Pu, H., et al., Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Food Chemistry, 2021. 343: p. 128548.
61. Gómez-Graña, S., et al., Self-Assembly of Au@Ag Nanorods Mediated by Gemini Surfactants for Highly Efficient SERS-Active Supercrystals. Advanced Optical Materials, 2013. 1(7): p. 477-481.
62. Ding, S., et al., Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation. Nano Research, 2018. 11(2): p. 686-695.
63. Asiaei, S., B. Smith, and P. Nieva, Enhancing conjugation rate of antibodies to carboxylates: Numerical modeling of conjugation kinetics in microfluidic channels and characterization of chemical over-exposure in conventional protocols by quartz crystal microbalance. Biomicrofluidics, 2015. 9(6): p. 064115.
64. Potts, J.C., et al., Molecular Surface Quantification of Multifunctionalized Gold Nanoparticles Using UV–Visible Absorption Spectroscopy Deconvolution. Analytical Chemistry, 2023. 95(35): p. 12998-13002.
65. Chen, L.-C., et al., Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use. Biosensors and Bioelectronics, 2020. 155: p. 112111.
66. Kim, K., et al., Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosensors and Bioelectronics, 2016. 77: p. 695-701.
67. Peronnet, E., et al., Isoelectric point determination of cardiac troponin I forms present in plasma from patients with myocardial infarction. Clin Chim Acta, 2007. 377(1-2): p. 243-7.
68. Vanhaverbeke, M., et al., C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up. Clin Cardiol, 2018. 41(9): p. 1201-1206.
69. Sallach, S.M., et al., A change in serum myoglobin to detect acute myocardial infarction in patients with normal troponin I levels. American Journal of Cardiology, 2004. 94(7): p. 864-867.
70. Ohwada, H., et al., Serum albumin levels and their correlates among individuals with motor disorders at five institutions in Japan. Nutr Res Pract, 2017. 11(1): p. 57-63.
71. Tian, X., et al., Association of Normal Serum Uric Acid Level and Cardiovascular Disease in People Without Risk Factors for Cardiac Diseases in China. J Am Heart Assoc, 2023. 12(10): p. e029633.
72. Kang, S.Y. and Y.S. Kim, Relationships between fasting glucose levels, lifestyle factors, and metabolic parameters in Korean adults without diagnosis of diabetes mellitus. J Diabetes, 2022. 14(1): p. 52-63.
73. Ren, L., et al., Hemoglobin in normal range, the lower the better?-Evidence from a study from Chinese community-dwelling participants. J Thorac Dis, 2014. 6(5): p. 477-82.