簡易檢索 / 詳目顯示

研究生: 李依璇
Lee, Yi-Hsuan
論文名稱: 氧化鋁/氧化鉿多階疊層結構對改善電阻轉換特性之研究
Study on the Improvement of Resistive Switching Characteristics by Al2O3/HfO2 multi-stacked structure
指導教授: 林樹均
Lin, Su-Jien
口試委員: 林樹均
甘炯耀
何志浩
張文淵
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 氧化鉿氧化鋁電阻式記憶體
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Resistive random access memory (RRAM) has recently attracted great attention due to its potential for replacement of flash memory in next-generation nonvolatile memory applications. In this thesis, we have investigated the resistive switching property of doping Al in HfO2-based RRAM. The Al-doped HfO2 films were prepared as multistack-like structure on TiN/Ti/SiO2/Si substrate by atomic layer deposition (ALD), which can control the film thickness precisely with high coverage ability. Moreover, in order to make Al diffuse more evenly through whole HfO2 film, post-deposition annealing had been done before depositing Pt top electrode by DC sputtering. The effect of Hf/Al ratio would also be discussed, and the proportion of doped-Al was controlled by ALD cycle repeat. The HfO2-based RRAM shows a bipolar resistive switching behavior that the positive bias induces a low resistance state and the negative bias resets to the relative high resistance state. The improved uniformity of resistive switching characteristics in the Al-doped HfO2 thin film RRAM is demonstrated. More physical details is also obtained from thermal I-V curve analysis.


    第一章 緒論 1.1 簡介 1.2 研究動機 第二章 文獻回顧 2.1 記憶體簡介 2.1.1 鐵電記憶體(FeRAM) 2.1.2 磁阻記憶體(MRAM) 2.1.3 相變化記憶體(PCRAM) 2.1.4 電阻式記憶體(RRAM) 2.1.4.1 鈣鈦礦結構型材料 2.1.4.2 二元金屬氧化物材料 2.2 電阻轉換機制簡介 2.2.1 微導電細絲傳導路徑(conducting filament model) 2.2.2 介面型態路徑 (interface-type path) 2.3 漏電流傳導機制簡介 2.4 優化電阻轉換效應的方法 2.4.1 摻雜效應 第三章 實驗流程 3.1 實驗動機 3.2 TiN底電極基板的製備 3.3 HfO2與Al-doped HfO2薄膜的製備 3.4 Pt上電極的製備 3.5薄膜退火處理(Post-deposition annealing) 3.6 薄膜分析與量測 3.6.1 薄膜成分分析 3.6.2 薄膜結晶性分析 3.6.3 電性分析 第四章 結果與討論 4.1 薄膜特性分析 4.1.1 薄膜結晶性分析 4.1.2 薄膜成分分析 4.2 薄膜電性分析 4.2.1 初始狀態比較 4.2.2 典型I-V關係曲線 4.2.3 高低阻值比較 4.2.4 操作電壓比較 4.2.5 退火(Post-deposition annealing)對電性的影響 4.2.5.1 初始狀態比較 4.2.5.2 典型I-V關係曲線 4.2.5.3 高低阻值比較 4.2.5.4 操作電壓比較 4.2.6 綜合比較 4.3 電極面積效應 4.4 變溫分析 4.4.1 耐久力測試 4.4.2 溫度對阻值影響 4.4.3 溫度對記憶時間影響 4.5 電阻轉換效應的探討 4.5.1 假想模型對雙極性電阻轉換的解釋 4.5.2 摻雜效應對電阻轉換機制的影響 第五章 結論 第六章 參考文獻

    [1] Evalueserve, “Non-volatile Memory Market,” BCC Research, SMC060A, July 2005.
    [2] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” 2008 IEEE International Electron Devices Meeting, 2008, p. 297-300.
    [3] Z. Fang, H. Y. Yu, W. J. Liu, Z. R. Wang, X. A. Tran, B. Gao, and J. F. Kang, “Temperature Instability of Resistive Switching on HfOx-Based RRAM Devices,” vol. 31, 2010, p. 476-478.
    [4] H. Y. Lee, P. S. Chen, C. C. Wang, S. Maikap, P. J. Tzeng, C. H. Lin, L. S. Lee, and M. J. Tsai, “Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide,” Japanese Journal of Applied Physics, vol. 46, Apr. 2007, pp. 2175-2179.
    [5] C. Walczyk, C. Wenger, R. Sohal, M. Lukosius, A. Fox, J. Dąbrowski, D. Wolansky, B. Tillack, H. J. Mussig, and T. Schroeder, “Pulse-induced low-power resistive switching in HfO2 metal-insulator-metal diodes for nonvolatile memory applications,” Journal of Applied Physics, vol. 105, 2009, p. 114103.
    [6] H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, “Ionic doping effect in ZrO2 resistive switching memory,” Applied Physics Letters, vol. 96, 2010, p. 123502.
    [7] C. Muller, “Emerging Concepts in Non-volatile Memory Technologies - Era of Resistance Switching Memories,” 2008 IEEE Computer Society Annual Symposium on VLSI, 2008, p. 3.
    [8] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status and outlook of emerging nonvolatile memory technologies,” IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004, p. 567-570.
    [9] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, “先進記憶體簡介,” 國研科技創刊號
    [10] 劉志益、曾俊元, “電阻式非揮發記憶體之近期發展”
    [11] G. Muller, N. Nagel, C. U. Pinnow, and T. Rohr, “Emerging non-volatile memory technologies,” ESSCIRC 2004, p. 37-44.
    [12] 葉林秀、李佳謀、徐明豐、吳德和, “磁阻式隨機存取記憶體技術的發展 — 現在與未來,” 2004, p. 607-619.
    [13] W. Y. Chang, “Characteristics of (Pr,Ca)MnO3 thin films on LaNiO3-electrodized Si substrate for nonvolatile resistance random access memory application,” Master thesis, National Tsing Hua University, July 2006.
    [14] I. G. Baek, M. S. Lee, S. Sco, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., p. 587-590.
    [15] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Applied Physics Letters, vol. 76, 2000, p. 2749.
    [16] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Applied Physics Letters, vol. 85, 2004, p. 4073.
    [17] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Applied Physics Letters, vol. 77, 2000, p. 139.
    [18] C. Rossel, G. I. Meijer, D. Bre’maud, and D. Widmer, “Electrical current distribution across a metal-insulator-metal structure during bistable switching,” Japanese Journal of Applied Physics, vol. 90, 2001, p. 2892.
    [19] L. P. Ma, J. Liu, S. Pyo, and Y. Yang, “Organic bistable light-emitting devices,” Applied Physics Letters, vol. 80, 2002, p. 362.
    [20] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Applied Physics Letters, vol. 80, 2002, p. 2997.
    [21] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Applied Physics Letters, vol. 85, 2004, p. 5655.
    [22] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, “Current switching of resistive states in magnetoresistive manganites,” Nature, vol. 388, 1997, p. 1995-1997.
    [23] Y. Tokura, “Colossal magnetoresistive manganites,” Journal of Magnetism and Magnetic Materials, vol. 200, 1999, p. 1-23.
    [24] R. Yang, X. M. Li, W. D. Yu, X. D. Gao, D. S. Shang, X. J. Liu, X. Cao, Q. Wang, and L. D. Chen, “The polarity origin of the bipolar resistance switching behaviors in metal/La0.7Ca0.3MnO3/Pt junctions,” Applied Physics Letters, vol. 95, 2009, p. 072105.
    [25] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 92, 2008, p. 022110.
    [26] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, ”Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” Applied Physics Letters, vol. 91, 2007, p. 012907.
    [27] R. Waser and M. Aono, “Nanoionics-based resistive switching memories.,” Nature materials, vol. 6, 2007, p. 833-840.
    [28] A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, 2008, p. 28-36.
    [29] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama and H. Tanaka, “Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide,” Applied Physics Letters, vol. 89, 2006, p. 103509.
    [30] K. M. Kim, B. J. Choi, and C. S. Hwang, “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films,” Applied Physics Letters, vol. 90, 2007, p. 242906.
    [31] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Transactions on Electron Devices, vol. 56, 2009, p. 193-200.
    [32] U. Russo, S. Member, D. Ielmini, C. Cagli, A. L. Lacaita, and S. Member, “Filament Conduction and Reset Mechanism Memory ( RRAM ) Devices,” vol. 56, 2009, p. 186-192.
    [33] K. Szot, W. Speier, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nature materials, vol. 5, 2006, p. 312-320.
    [34] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory.,” Nature nanotechnology, vol. 5, 2010, p. 148-153.
    [35] K. Tsubouchi, I. Ohkubo, H. Kumigashira, M. Oshima, Y. Matsumoto, K. Itaka, T. Ohnishi, M. Lippmaa, and H. Koinuma, “High-Throughput Characterization of Metal Electrode Performance for Electric-Field-Induced Resistance Switching in Metal/Pr0.7Ca0.3MnO3/Metal Structures,” Advanced Materials, vol. 19, 2007, p. 1711-1713.
    [36] A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, ” Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface” Applied Physics Letters, vol. 83, 2003, p. 957.
    [37] S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen, and a J. Jacobson, “Field-induced resistive switching in metal-oxide interfaces,” Applied Physics Letters, vol. 85, 2004, p. 317.
    [38] X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, “Direct resistance profile for an electrical pulse induced resistance change device,” Applied Physics Letters, vol. 87, 2005, p. 233506.
    [39] T. Fujii, M. Kawasaki, a Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3,” Applied Physics Letters, vol. 86, 2005, p. 012107.
    [40] R. Fors, S. Khartsev, and A. Grishin, “Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition,” Physical Review B, vol. 71, 2005, p. 1-10.
    [41] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, “Strong electron correlation effects in nonvolatile electronic memory devices,” Applied Physics Letters, vol. 88, 2006, p. 033510.
    [42] C. H. Chen, “Study on the HfO2-TiO2 thin films for Resistance Random Access Memory,” Master thesis, National Tsing Hua University, July 2009.
    [43] S. M. Sze, Kwok K. Ng, “Physics of Semiconductor Devices,” 3rd edition, Wiley-interscience, 2007, p.227-228.
    [44] T. Hori, “Gate dielectrics and MOS ULSIs:principle, technologies, and applications,” Springer, Berlin, 1997, p.8-45.
    [45] S. C. Hung, “Characteristics of nickel oxide thin films for resistance random access memory application,” Master thesis, National Cheng Kung University, June 2008.
    [46] J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K. P. Biju, S. Kim, S. Park, and H. Hwang, “Diode-less Nano-scale ZrOx/HfOx RRAM Device with Excellent Switching Uniformity and Reliability for High-density Cross-point Memory Applications,” IEDM, 2010, p. 452-455.
    [47] S. Yu, B. Gao, H. Dai, B. Sun, L. Liu, X. Liu, R. Han, J. Kang, and B. Yu, “Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers,” Electrochemical and Solid-State Letters, vol. 13, 2010, p. H36.
    [48] H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, “Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach,” Applied Physics Letters, vol. 98, 2011, p. 042105.
    [49] Q. Liu, S. Long, W. Wang, Q. Zuo, S. Zhang, J. Chen, and M. Liu, “Improvement of Resistive Switching Properties in ZrO2-Based ReRAM With Implanted Ti Ions,” IEEE Electron Device Letters, vol. 30, 2009, p. 1335-1337.
    [50] C. H. Lin, “Study on the resistive switching characteristics of atomic layer deposition HfO2 with Ti interlayers,” Master thesis, National Tsing Hua University, July 2010.
    [51] J. Han, M. Shen, W. Cao, a M. R. Senos, and P. Q. Mantas, “Hopping conduction in Mn-doped ZnO,” Applied Physics Letters, vol. 82, 2003, p. 67.
    [52] R. Suzuki, J. Suda, and T. Kimoto, “Temperature Dependence of Electrical Properties of NiO Thin Films for Resistive Random Access Memory,” Materials Research Society, vol. 1071, 2008, p. 4-5.
    [53] X. F. Wang, Q. Li, and M. S. Moreno, “Effect of Al and Y incorporation on the structure of HfO2,” Journal of Applied Physics, vol. 104, 2008, p. 093529.
    [54] J. Song, A. I. Inamdar, B. Jang, K. Jeon, Y. Kim, K. Jung, Y. Kim, H. Im, W. Jung, H. Kim, and J. P. Hong, “Effects of Ultrathin Al Layer Insertion on Resistive Switching Performance in an Amorphous Aluminum Oxide Resistive Memory,” Applied Physics Express, vol. 3, 2010, p. 091101.
    [55] C. Arhammar, C. Moyses Araujo, and R. Ahuja, “Energetics of Al doping and intrinsic defects in monoclinic and cubic zirconia: First-principles calculations,” Physical Review B, vol. 80, 2009, p. 1-9.
    [56] H. Zhang, B. Gao, S. Yu, L. Lai, L. Zeng, B. Sun, L. Liu, X. Liu, J. Lu, R. Han, and J. Kang, “Effects of Ionic Doping on the Behaviors of Oxygen Vacancies in HfO2 and ZrO2: A First Principles Study,” 2009 International Conference on Simulation of Semiconductor Processes and Devices, 2009, p. 1-4.
    [57] B. Gao, H. W. Zhang, S. Yu, B. Sun, L. F. Liu, X. Y. Liu, Y. Wang, R. Q. Han, J. F. Kang, B. Yu, and Y. Y. Wang, “Oxide-Based RRAM : Uniformity Improvement Using A New Material-Oriented Methodology,” 2009 IEEE Computer Society Annual Symposium on VLSI, 2009, p. 30-31.
    [58] A. Makarov, V. Sverdlov, and S. Selberherr, “Stochastic model of the resistive switching mechanism in bipolar resistive random access memory: Monte Carlo simulations,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 29, 2011, p. 01AD03.
    [59] Y. J. Wun, “Characterization of Transparent Resistive Random Access Memory Devices Based on HfO2/Al2O3 Multi-layer Stacking as Resistive Switching Film,” Master thesis, National Chiao Tung University, August 2010.
    [60] H. B. Lv, H. Wan, and T. Tang, “Improvement of Resistive Switching Uniformity by Introducing a Thin GST Interface Layer,” IEEE Electron Device Letters, vol. 31, 2010, p. 978-980.
    [61] W. Y. Chang, K. J. Cheng, J. M. Tsai, H. J. Chen, F. Chen, M. J. Tsai, and T. B. Wu, “Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals,” Applied Physics Letters, vol. 95, 2009, p. 042104.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE