簡易檢索 / 詳目顯示

研究生: 許家瑋
Hsu, Chia-Wei
論文名稱: 金-氧化鎵單晶奈米線的合成研究與電阻式記憶體之應用
Synthesis of Single Crystal Gold-in-Ga2O3 Nanowires and Their Application in Resistive Switching Memory
指導教授: 闕郁倫
Chueh, Yu-Lun
口試委員: 陳啟東
Chen, Chii-Dong
陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
謝光前
Hsieh, Kuang-Chien
闕郁倫
Chueh, Yu-Lun
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 106
中文關鍵詞: 金-氧化鎵奈米線電阻式記憶體核殼狀奈米線
外文關鍵詞: Gold-in-Ga2O3 Nanowires, Resistive Switching Memory, Core-Shell Nanowires
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究主題為一維金-氧化鎵異質結構奈米線的合成、成長機制、統計模型與電阻轉換性質探討。藉由鎵金屬、金奈米觸媒顆粒及氧化矽基板於800 ℃與1 × 10-2托爾環境下,在三區真空爐管中合成出帶有雙晶結構的一維核殼狀及豆夾狀金-氧化鎵異質奈米線。此外,利用羅吉斯迴歸建立異質結構奈米線的比例與合成參數模型,結果指出較高的溫度與較大的觸媒顆粒可以得到較密的異質結構,其原因來自於上述參數導致了金-鎵合金不均勻的過飽和現象,有利於金進入氧化鎵殼層中。
    最後,我們發現單根金-氧化鎵核殼狀奈米線具有雙極式電阻轉換現象,更重要的是,此奈米線展現了不受電極距離影響的穩定操作電壓,這是由於此奈米線擁有連續金線作為內建的傳導層。這項特性使得在單根奈米線上製作多個電阻轉換元件成為可能。此外,金-氧化鎵核殼狀奈米線的開關比(on/off ratio)超過1000倍。這些特性使得金-氧化鎵核殼狀奈米線擁有成為未來高密度記憶體元件的潛力。


    This thesis is commitment on the fabrication, growth mechanism, statistical model and resistive switching characteristic of one-dimensional gold-in-Ga2O3 heterostructure nanowires. We have successfully fabricated gold continuous nanowire or discrete nanoparticles embedded with twin boundary in the Ga2O3 shell layer using gallium (Ga) as growth source with gold (Au) as catalyst. The growth temperature was 800 ℃ with a pressure of 1 × 10-2 torr in a three-zone vacuum furnace through Vapor-Liquid-Solid (VLS) growth mechanism. Using the generalized logit regression to model the relationship between fabrication parameters and ratios of the heterostructures, we find that the heterostructure nanowire density can be increased at higher temperature and larger catalyst size resulted from non-uniform supersaturation between edge side and center area of Au-Ga droplet.
    Finally, we investigated the resistive switching behaviors of single gold-in-Ga2O3 core-shell nanowire, for which the bipolar resistive switching characteristics with invariable set and reset voltages can be obtained. We attribute the unique property of invariance to the built-in conduction paths of gold core. This invariance allows us to fabricate many resistive switching cells with the same operating voltage by depositing repetitive metal electrodes along a single nanowire. Other characteristics of these core-shell resistive switching nanowires include comparable driving electric field with other thin film and a remarkable on/off ratio more than 3 orders of magnitude at a low driving voltage of 2 V. A smaller but still impressive on/off ratio of 10 can be obtained at an even lower bias of 0.2 V. These characteristics of gold-in-Ga2O3 core-shell nanowires make it a viable candidate for future high-density resistive memory devices.

    Contents Abstract II 摘要 IV Acknowledgements V Contents I List of Acronyms and Abbreviations V Chapter 1 Introduction 1 1.1 Introduction of Memory 1 1.2 Development of Non-Volatile Memories 3 1.2.1 Ferroelectric RAM (FeRAM) 3 1.2.2 Magnetic RAM (MRAM) 4 1.2.3 Phase Change RAM (PCRAM) 5 1.2.4 Resistive RAM (RRAM) 6 1.3 Mechanisms and Switching Behaviors of RRAM 8 1.3.1 Valence Change Mechanism (VCM) 8 1.3.2 Electrochemical Metallization Mechanism (ECM) 11 1.3.3 Thermochemical Mechanism (TCM) 13 1.3.4 Space-Charge-Limited Current (SCLC) Mechanism 14 1.3.5 Bipolar 15 1.3.6 Unipolar 16 1.4 Growth Mechanism of One-Dimensional Nanostructures 17 1.4.1 Vapor-Liquid-Solid (VLS) Growth Mechanism 17 1.4.2 Vapor-Solid (VS) Growth Mechanism 20 1.4.3 Solution-Liquid-Solid (SLS) Growth Mechanism 21 1.5 Statistical Analysis 22 1.5.1 Generalized Logit Regression 22 1.6 Scope and Aim of the Thesis 23 1.6.1 Gold-in-Ga2O3 Heterostructure Nanowires 23 1.6.2 Statistical Analysis 27 1.6.3 Resistive Switching Properties 29 Chapter 2 Experimental Procedures 31 2.1 Process Equipment 31 2.1.1 Furnace System 31 2.1.2 Three-axis Oil Hydraulic Micromanipulator 32 2.1.3 E-beam Lithology System 33 2.1.4 E-gun Evaporator System 34 2.2 Analytical Characterization Equipment 35 2.2.1 X-ray Diffraction (XRD) 35 2.2.2 Scanning Electron Microscope (SEM) 36 2.2.3 Transmission Electron Microscope (TEM) 37 2.2.4 Scanning Transmission Electron Microscope (STEM) 37 2.2.5 Energy Dispersion Spectrometer (EDS) 38 2.2.6 I-V Characterization 38 2.3 Experimental Procedures 39 2.3.1 Gold-in-Ga2O3 Heterostructure Nanowires (Chapter 3) 39 2.3.2 Statistical Analysis (Chapter 4) 42 2.3.3 Resistive Switching Properties (Chapter 5) 44 Chapter 3 Synthesis and Characterization of Gold-in-Ga2O3 Heterostructure Nanowires 45 3.1 Motivation 45 3.2 Results and Discussion 46 3.3 Summary and Conclusions 53 Chapter 4 Statistical Analysis of Gold-in-Ga2O3 Heterostructure Nanowires 54 4.1 Motivation 54 4.2 Results and Discussion 55 4.3 Summary and Conclusions 63 Chapter 5 Resistive Switching Properties of Gold-in-Ga2O3 Core-Shell Nanowires 65 5.1 Motivation 65 5.2 Results and Discussion 66 5.3 Summary and Conclusions 86 Chapter 6 Conclusion and Future Prospects 87 6.1 Coaxial 1-D N-MOS and P-MOS Nanowires 87 6.2 Resistive Switching Devices in Nanowires 88 References 89

    Chapter 1
    [1.1] G. Müller, N. Nagel, C. –U. Pinnow, and T. Röhr, “Emerging Non-Volatile Memory Technologies”, Solid-State Circuits Conference, 2003, Proceeding of the 29th European, (2003), pp 37-44.
    [1.2] R. Waser, and M. Aono, “Nanoionics-based resistive switching memories”, Nature Materials, 6, (2007), pp 833-840.
    [1.3] H. Li, and Y. Chen, “An Overview of Non-Volatile Memory Technology and the Implication for Tools and Architectures”, Design, Automation & Test in Europe Conference & Exhibition, 2009, DATE ‘09, (2009), pp 731-736.
    [1.4] J. F. Scott, and C. A. P. DE Araugo, “Ferroelectric Memories”, Science, 246, (1989), pp 1400-1405.
    [1.5] J. –G. Zhu, “Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability”, Proceedings of the IEEE, 96, (2008), pp 1786-1798.
    [1.6] S. Raous, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. –C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. –H. Chen, H. –L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology”, IBM J. RES. & DEV., 52, (2008), pp 465-479.
    [1.7] A. Sawa, “Resistive switching in transition metal oxides”, materialstoday, 11, (2008), pp 28-36.
    [1.8] Y. Fujisaki, “Current Status of Nonvolatile Semiconductor Memory Technology”, Japanese Journal of Applied Physics, 49, (2010), pp 100001.
    [1.9] S. –L. Li, D. S. Shang, J. Li, J. L. Gang, and D. N. Zheng, “Resistive switching properties in oxygen-deficient Pr0.7Ca0.3MnO3 junctions with active Al top electrodes”, J. Appl. Phys., 105, (2009), pp 033710.
    [1.10] C. Y. Liu, P. –H Wu, A. Wang, W. –Y. Jang, J. –C. Yiung, K. Y. Chiu, and T. –Y. Tseng, “Bistable Resistive Switching of a Sputter-Deposited Cr-doped SrZrO3 Memory Film”, IEEE Electron Device Letters, 26, (2005), pp 351-353.
    [1.11] G. –S. Park, X. –S. Li, D. –C. Kim, R. –J. Jung, M. –J. Lee, and S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film”, Applied Physics Letters, 91, (2007), pp 222103.
    [1.12] W. –Y. Chang, C. –A. Lin, J. –H. He, and T. –B. Wu, “Resistive switching behaviors of ZnO nanorod layers”, Applied Physics Letters, 96, (2010), pp 242109.
    [1.13] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Aways, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching”, Applied Physics Letters, 89, (2006), pp 223509.
    [1.14] H. Sim, D. Choi, D. Lee, S. Seo, M. –J. Lee, I. –K. Yoo, and H. Hwang, “Resistance-Switching Characteristics of Polycrystalline Nb2O5 for Nonvolatile Memory Application”, IEEE Electron Device Letters, 26, (2005), pp 292-294.
    [1.15] D. C. Kim, S. Seo, S. E. Ahn, D. –S. Suh, M. J. Lee, B. –H. Park, I. K. Yoo, I. G. Baek, H. –J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryn, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films”, Applied Physics Letters, 88, (2006), pp 202102.
    [1.16] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaze, “Switching characteristics of Cu2O metal-insulator-metal resistive memory”, Applied Physics Letters, 91, (2007), pp 123517.
    [1.17] Y. Xia, W. He, L. Chen, X. Meng, and Z. Liu, “Field-induced resistive switching based on space-charge-limited current”, Applied Physics Letters, 90, (2007), pp 022907.
    [1.18] D. S. Kim, Y. H. Kim, C. E. Lee, and Y. T. Kim, “Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure:Evidence for a Mott transition”, Physical Review B, 74, (2006), pp 174430.
    [1.19] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater., 21, (2009), pp 2632-2663.
    [1.20] R. Merkle, and J. Maier, “How Is Oxygen Incorporated into Oxides? A Comprehensive Kinetic Study of a Simple Solid-State Reaction with SrTiO3 as a Model Material”, Angew. Chem. Int. Ed., 47, (2008), pp 3874-3894.
    [1.21] R. Waser, “in Ferroelectric Ceramics”, Ed N. Setter, Birkhauser Verlag.
    [1.22] T. Baiatu, R. Waser, K. H. Hardtl, “DC Electrical Degradation of Perovskite-Type Titanate. 3. A Model of The Mechanism”, J. Am. Ceram. Soc., 73, (1990), pp 1663.
    [1.23] K. Szot, W. Speier, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3”, Nature Materials, 5, (2006), pp 312-320.
    [1.24] C. Schindler, M. Meier, R. Waser, and M. N. Kozicki, “Resistive switching in Ag-Ge-Se with extremely low write currents”, Non-Volatile Memory Technology Symposium, 2007, NVMTS ‘07, (2007), pp 82-85.
    [1.25] J. –B. Yun, S. Kim, S. Seo, M. –J. Lee, D. –C. Kim, S. –E. Ahn, Y. Park, J. Kim, and H, Shin, “Random and localized resistive switching observation in Pt/NiO/Pt”, phys. Stat. sol., 1, (2007), pp 280-282.
    [1.26] A. Rose, “Space-Charge-Limited Currents in Solids”, Physical Review, 97, (1955), pp 1538-1544.
    [1.27] C. M. V. Vliet, G. Bosman, and L. L. Hench, “NEW PERSPECTIVES OF SILICON CARBIDE: An Overview, with Special Emphasis on Noise and Space-Charge-Limits Flow”, Ann. Rev. Mater. Sci., 18, (1988), pp 381-421.
    [1.28] S. Furnkawa, T. Kagawa, and N. Matsumoto, “ESTOMATION OF LOCALIZED STATE DISTRIBUTION PROFILES IN UNDOPED AND DOPED a-Si:H BY MEASURING SPACE-CHARGE-LIMITED CURRENT”, Solid State Communications, 44, (1982), pp 927-930.
    [1.29] M. A. Rafiq, Y. Tsuchiya, H. Mizuta, S. Oda, S. Uno, Z. A. K. Durrani, and W. I. Milne, “Charge injection and trapping in silicon nanocrystals”, Applied Physics Letters, 87, (2005), pp 182101.
    [1.30] Y. Gu, and L. J. Lauhon, “Space-charge-limited current in nanowires depleted by oxygen adsorption”, Applied Physics Letters, 89, (2006), pp 143102.
    [1.31] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Letters, 3, (2003), pp 149-152.
    [1.32] H. Akinaga, and H. Shima, “Resistive Random Access Memory (ReRAM) Based on Metal Oxides”, Proceedings of the IEEE, 98, (2010), pp 2237-2251.
    [1.33] N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering R 60, 1, (2008), pp 51.
    [1.34] R. S. Wagner, and W. C. Ellis, “VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH”, Applied Physics Letters, 4, (1964), pp 89-90.
    [1.35] J. Zhang, and F. Jiang, “Catalytic growth of Ga2O3 nanowires by physical evaporation and their photoluminescence properties”, Chemical Physics, 289, (2003), pp 243-249.
    [1.36] C. -C. Chen, C. -C. Yeh, C. –H. Chen, M. –Y. Yu, H. –L. Liu, J. –J. Wu, K. –H. Chen, L. –C. Chen, J. Y. Peng, and Y. –F. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires”, J. Am. Chem. Soc., 123, (2001), pp 2791-2798.
    [1.37] A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli, G. Sberveglieri, “In2O3 nanowires for gas sensors: morphology and sensing characterisation”, Thin Solid Films, 515, (2007), pp 8356-8359.
    [1.38] M. H. Huang, Y. Wu, H Feick, N. Tean, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater, 13, (2001), pp 113-116.
    [1.39] B. Fuhrmann, H. S. Leipner, and H. –R. Höche, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy”, Nano Letters, 5, (2005), pp 2524-2527.
    [1.40] Y. Wu, and P. Yanh, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, J. Am. Chem. Soc., 123, (2001), pp 3165-3166.
    [1.41] X. Xiang, C. –B. Cao, Y. –J. Guo, and J. –S. Zhu, “A simple method to synthesize gallium oxide nanosheets and nanobelts”, Chemical Physics Letters, 378, (2003), pp 660-664.
    [1.42] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, 291, (2001), pp 1947-1959.
    [1.43] Y. –L. Chueh, M. –W. Lai, J. –Q. Liang, L. –J. Chou, and Z. L, Wang, “Systematic Study on the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor-Solid Process”, Adv. Funct. Mater., 16, (2006), pp 2243-2251.
    [1.44] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation”, Solid State Communications, 109, (1999), pp 677-682.
    [1.45] Y. Xia, P. Yang, Y. Sun, Y. Wu, B, Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis Characterization, and Applications”, Adv. Mater., 15, (2003), pp 353-389.
    [1.46] X. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”, Nano Letters, 3, (2003), pp 93-99.
    [1.47] C. –W. Chen, C. –Y. Chen, P. H. –C. Yang, and T. –H. Chen, “Analysis of experimental data on internal waves with statistical method”, Engineering Computations International Journal for Computer-Aided Engineering and Software, 24, (2007), pp 116-150.
    [1.48] R. B. D’Agostino, M. –L. Lee, A. J. Belanger, L. A. Cupples, K. Anderson, and W. B. Kannel, “Relation of pooled logistic regression to time dependent cox regression analysis: The framingham heart study”, Statistics in Medicine, 9, (1990), pp 1501-1515.
    [1.49] W. Lu, and C. M. Lieber, “Semiconductor nanowires”, J. Phys. D: Appl. Phys., 39, (2006), pp R387-R406.
    [1.50] Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices”, materialstoday, 9, (2006), pp 18-27.
    [1.51] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics”, Nature, 415, (2002), pp 617-620.
    [1.52] F. Qian, S. Gradečak, Y. Li, C. –Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes”, Nano Letters, 5, (2005), pp 2287-2291.
    [1.53] L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures”, Nature, 420, (2002), pp 57-61.
    [1.54] H. –J. Choi, J. C. Johnson, R. He, S. –K. Lee, D. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers”, J. Phys. Chem. B, 107, (2003), pp 8721-8725.
    [1.55] C. –H. Hsieh, L. –J. Chou, G. –R. Lin, Y. Bando, and D. Golberg, “Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires”, Nano Letters, 8, (2008), pp 3081-3085.
    [1.56] P. –H. Chen, C. –H. Hsieh, S. –Y. Chen, C. –H. Wu, Y. –J. Wu, L. –J. Chou, and L. –J. Chen, “Direct Observation of Au/Ga2O3 Peapodded Nanowires and Their Plasmonic Behaviors”, Nano Letters, 10, (2010), pp 3267-3271.
    [1.57] Y. –J. Wu, C. –H. Hsieh, P. –H. Chen, J. –Y. Li, L. –J. Chou, and L. –J. Chen, “Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires”, ACS Nano, 4, (2010), pp 1393-1398.
    [1.58] C. –H. Hsieh, M. –T. Chang, Y. –Y. Chien, L. –J. Chou, L. –J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires”, Nano Letters, 8, (2008), pp 3288-3292.
    [1.59] S. Xu, N. Adiga, S. Ba, T. Dasgupta, C. F. J. Wu, and Z. L. Wang, “Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments”, ACS Nano, 3, (2009), pp 1803-1812.
    [1.60] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found”, Nature, 453, (2008), pp 80-83.
    [1.61] K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J. –S. Kim, and B. H. Park, “Resistive Switching Multistate Nonvolatile Memory Effects in a Single Cobalt Oxide Nanowire”, Nano Letters, 10, (2010), pp 1359-1363.
    [1.62] K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, J. –S. Kim, B. H. Park, and T. Kawai, “Intrinsic Mechanisms of Memristive Switching”, Nano Letters, 11, (2011), pp 2114-2118.
    [1.63] K. –H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu, “A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications”, Nano Letters, 12, (2012), pp 389-395.
    [1.64] K. Oka, T. Yanagida, K. Nagashima, H. Tanaka, and T. Kawai, “Nonvolatile Bipolar Resistive Memory Switching in Single Crystalline NiO Heterostructured Nanowires”, J. Am. Chem. Soc., 131, (2009), pp 3434-3435.
    [1.65] C. –Y. Chen, Y. K. Lin, C. –W. Hsu, C. –Y. Wang, Y. –L. Chueh, L. –J. Chen, S. –C. Lo, and L. –J. Chou, “Coaxial Metal-Silicide Ni2Si/C54-TiSi2 Nanowires”, Nano Letters, 12, (2012), pp 2254-2259.
    Chapter 2
    Chapter 3
    [3.1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater, 15, (2003), pp 353-389.
    [3.2] Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices”, materialstoday, 9, (2006), pp 18-27.
    [3.3] C. –H. Hsieh, L. –J. Chou, G. –R. Lin, Y. Bando, and D. Golberg, “Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires”, Nano Letters, 8, (2008), pp 3081-3085.
    [3.4] P. –H. Chen, C. –H. Hsieh, S. –Y. Chen, C. –H. Wu, Y. –J. Wu, L. –J. Chou, and L. –J. Chen, “Direct Observation of Au/Ga2O3 Peapodded Nanowires and Their Plasmonic Behaviors”, Nano Letters, 10, (2010), pp 3267-3271.
    [3.5] Y. –J. Wu, C. –H. Hsieh, P. –H. Chen, J. –Y. Li, L. –J. Chou, and L. –J. Chen, “Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires”, ACS Nano, 4, (2010), pp 1393-1398.
    [3.6] C. –H. Hsieh, M. –T. Chang, Y. –Y. Chien, L. –J. Chou, L. –J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires”, Nano Letters, 8, (2008), pp 3288-3292.
    Chapter 4
    Chapter 5
    [5.1] K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J. –S. Kim, and B. H. Park, “Resistive Switching Multistate Nonvolatile Memory Effects in a Single Cobalt Oxide Nanowire”, Nano Letters, 10, (2010), pp 1359-1363.
    [5.2] K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, J. –S. Kim, B. H. Park, and T. Kawai, “Intrinsic Mechanisms of Memristive Switching”, Nano Letters, 11, (2011), pp 2114-2118.
    [5.3] K. –H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu, “A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications”, Nano Letters, 12, (2012), pp 389-395.
    [5.4] Y. –J. Wu, C. –H. Hsieh, P. –H. Chen, J. –Y. Li, L. –J. Chou, and L. –J. Chen, “Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires”, ACS Nano, 4, (2010), pp 1393-1398.
    [5.5] A. Sawa, “Resistive switching in transition metal oxides”, materialstoday, 11, (2008), pp 28-36.
    [5.6] K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J. –S. Kim, and B. H. Park, “Resistive-Switching Memory Effects of NiO Nanowire Metal Junctions”, J. Am. Chem. Soc., 132, (2010), pp 6634-6635.
    [5.7] B. Gao, B. Sun, H. Zhang, L. Liu, X. Liu, R. Han, J. Kang, and B. Yu, “Unified Physical Model of Bipolar Oxide-Based Resistive Switching Memory”, IEEE Electron Device Letters, 30, (2009), pp 1326-1328.
    [5.8] S. Yu, and H. –S. Philip, “A Phenomenological Model for the Reset Mechanism of Metal Oxide RRAM”, IEEE Electron Device Letters, 31, (2010), pp 1455-1457.
    [5.9] Y. –H. You, B. –S. So, J. –H. Hwang, W. Cho, S. S. Lee, T. –M. Chung, C. G. Kim, and K. –S. An, “Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition”, Applied Physics Letters, 89, (2006), pp 222105.
    [5.10] S. I. Kim, J. H. Lee, Y. W. Chang, S. S. Hwang, and K. –H. Yoo, “Reversible resistive switching behaviors in NiO nanowires”, Applied Physics Letters, 93, (2008), pp 033503.
    [5.11] Y. H. Kang, J. –H. Choi, T. I. Lee, W. Lee, and J. –M. Myoung, “Thickness dependence of the resistive switching behavior of nonvolatile memory device structures based on undoped ZnO films”, Solid State Communications, 151 (2011), pp 1739-1742.
    [5.12] S. M. Sze, and K. K. Ng, “Physics of Semiconductor Devices”, Wiley-Interscience, (2007).
    [5.13] K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, “Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method”, Journal of Applied Physics, 110 (2011), pp 063720.
    [5.14] Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, “Preparation and Electrical Properties of Ultrafine Ga2O3 Nanowires”, J. Phys. Chem. B, 110 (2006), pp 796-800.
    [5.15] S. Gowtham, M. Deshpande, A. Costales, and R. Pandey, “Structural, Energetic, Electronic, Bonding, and Vibrational Properties of Ga3O, Ga3O2, Ga3O3, Ga2O3, and GaO3 Clusters”, J. Phys. Chem. B, 109 (2005), pp 14836-14844.
    [5.16] D. S. Shang, J. R. Sun, L. Shi, and B. G. Shen, “Photoresponse of the Schottky junction Au/SrTiO3:Nb in different resistive states”, Applied Physics Letters, 93 (2008), pp 102106.
    [5.17] Y. Gu, and L. J. Lauhon, “Space-charge-limited current in nanowires depleted by oxygen adsorption”, Applied Physics Letters, 89 (2006), pp 143102.
    [5.18] A. Rose, “Space-Charge-Limited Currents in Solids”, Physical Review, 97 (1955), pp 1538-1544.
    [5.19] Y. –D. Chiang, W. –Y. Chang, C. –Y. Ho, C. –Y. Chen, C. –H. Ho, S. –J. Lin, T. –B Wu, and J. –H. He, “Single-ZnO-Nanowire Memory”, IEEE Transactions on Electron Devices, 58 (2011), pp 1735-1739.
    [5.20] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories”, Applied Physics Letters, 92 (2008), pp 232112.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE