研究生: |
陳筱晨 Chen, Shiau Chen |
---|---|
論文名稱: |
研發並利用雷射剝蝕技術製成可吸收微流體 Fabrication of Biodegradable/Biocompatible Microfluidic System Using Laser Ablation |
指導教授: |
王潔
Wang, Jane |
口試委員: |
劉大佼
陳俊太 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 生物可降解高分子 、雷射剝蝕 、微流體 |
外文關鍵詞: | Biomaterial, Laser Ablation, Microfluidics |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
至2014年為止,在美國大約有12萬人正著急得等待著進行器官移植手術。然而需接受器官移植等待人數每年不斷增加,器官再生就成為了備受關注的議題。為了能夠再生一個完整的器官,首先需要解決的是製造出血管網絡來提供養分以及移除細胞代謝廢物讓周遭的細胞生長,並進而生長成所需要的器官。此論文主要著重在於研究及探討新的技術-雷射剝蝕,利用雷射剝蝕來製造仿微血管的圖案,亦即提供一個支架讓細胞生長,將細胞養在支架上,進而獲得微血管網絡。
具分支狀的微流體常被運用在偵測器、感測器及物質分析。此論文利用分支狀的微流體來模仿微血管。所使用的高分子為PDMS、PGS以及APS。PDMS具有良好的生物相容性,但其為不可降解高分子。然而PGS與APS不僅具有極佳的生物相容性、可調整的機械性質,更重要的是其具有生物可降解性。生物可降解高分子的特點為: 當組織再生時,高分子會慢慢被分解,不需要有額外的程序取出高分子。
相對於傳統黃光製程或是軟微影技術來說,利用雷射剝蝕技術來製造微流體是較簡單、較安全的製程。微流體的流道深度可以被精準的控制且所設計的圖案可變性高。利用雷射剝蝕來製造圖案所需考慮的參數為: 能量、直徑大小、剝蝕頻率、剝蝕速度以及重複剝蝕的次數。此論文使用能量6J/cm2和直徑150um來製造微流體。其他的參數像是剝蝕頻率、剝蝕速度和重複剝蝕次數也將詳細的探討。使用這些參數,我們成功的製造出多層微流體為的就是能夠模擬更真實的立體微血管網絡。藉著由下往上組裝的方式來製作多層的微流體,希望能在組織工程這個領域裡提供一個組織再生的新選擇。
As up to 2014, there were about 123,800 patients in the U.S. waiting for a life saving organ transplant. Organ regeneration is a pressing issue as the waiting list of organ transplant is getting longer and longer year by year. To achieve the ultimate goal, the regeneration of organs, the lack of blood vessel in the regeneration of multi-layered is needed to be solved. In this work, a novel fabrication method, laser ablation, is developed for the fabrication of biodegradable microfluidic devices for the regeneration of vascularized tissue.
Mircorfluidic devices with branched micro-size channels have been applied in detectors, sensors, and analytical separation. To crate biocompatible and biodegradable micorfluidic systems, one biocompatible polymer, poly(dimethylsiloxane) (PDMS), and two biodegradable polymers, poly(glycerol sebacate) (PGS) and poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s (APS), were synthesized for the fabrication of branched microfluidic systems using laser ablation. These branched microfluidic systems aim to mimic complex microvascular systems to provide nutrient and oxygen for organs such as kidney and liver regeneration. The biodegradable polymers, PGS and APS, with controllable stiffness and degradation rate are able to mimic microvascular systems in vivo, while degrading slowly during new tissue regeneration.
Laser ablation is a rather simple fabrication method that can be easily controlled and is a safe process compared to conventional microfluidic system fabrication methods such as lithography and soft lithography. The channels depth can be controlled precisely and are high flexibility in the design of fabrication patterns by utilizing laser ablation. There are several fabrication parameters that require to be analyzed, including fluence (energy per unit area), beam size of laser pulse, beam velocity, beam firing frequency, and numbers of repeated ablation. In this study, the fluence was chosen as 6 J/cm^2 and the beam size of laser pulse was set as 150 μm. A few other parameters that can affect the fabrication of microfluidic devices are beam velocity, beam firing frequency, and numbers of repeated ablation. These parameters were thoroughly investigated, and are successfully applied in the fabrication of multiple devices. This study presents a revolutionary micropatterning methodology that enables the fabrication of a 3D microvascular system through a bottom-up process, and is expected to present new options for the field of tissue engineering.
1. Cascalho, M., J. Cascalho, and Platt, New Technologies for Organ Replacement and Augmentation.Mayo Clinic proceedings, Vol. 80, pp. 370-378, (2005).
2. National Kudney Foundation. Available from: http://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-Transplantation-Stats.cfm.
3. U.S. Government Information on Organ and Tissue Donation and Transplantation. Available from: http://www.organdonor.gov/about/data.html.
4. United Network for Organ Sharing (UNOS). Available from: http://optn.transplant.hrsa.gov/converge/latestdata/viewDataReports.asp.
5. Griffith, L.G. and G. Naughton, Opportunities Tissue Engineering--Current Challenges and Expanding.Science. Vol. 295, pp. 1009, (2002).
6. Agarwal S, Holton KL, and Lanza R, Efficient Differentiation of Functional Hepatocytes from Human Embryonic Stem Cells. Stem Cells. Vol. 26, pp. 1117-1127,(2008).
7. Kehat I, Kenyagin-Karsenti D, Snir M, et al., Human Embryonic Stem Cells Can Differentiate into Myocytes with Structural and Functional Properties of Cardiomyocytes.The Journal of Clinical Investigation, Vol.108, pp. 407-414, (2001).
8. Bae H., et al., Building Vascular Networks.Sci Transl Med., Vol. 4, pp. 160ps23, (2012).
9. Fidkowski C, Kaazempur-Mofard MR, et al., Endothelialized Microvasculature Based on a Biodegradable Elastomer. Tissue Eng, Vol. 11, pp.302-309 (2005).
10. Borenstein, J.T., et al., Living Three-dimensional Micro Fabricated Constructs for The Replacement of Vital Organ Function. Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference.Vol.2, pp. 1754 - 1757,(2003).
11. Chau, L.T., B.E. Rolfe, and J.J. Cooper-White, A Microdevice for The Creation of Patent, Three-dimensional Endothelial Cell-based Microcirculatory Networks.Biomicrofluidics,Vol. 5, pp. 034115-034115-14 , (2011).
12. McDonald, J.C., et al., Fabrication of Microfluidic System in Poly(dimethyl siloxane).Electrophoresis, Vol. 21, pp. 27-40, (2000).
13. Weibel, D., G. Weibel, and Whitesides, Applications of Microfluidics in Chemical Biology.Current Opinion in Chemical Biology, Vol. 10, pp. 584-591, (2006).
14. Beebe, D., et al., Physics and Applications of Microfluidics in Biology.Annual Review of Biomedical Engineering, Vol. 4, pp. 261-286, (2002).
15. Choi, N., et al., Microfluidic Scaffolds for Tissue Engineering.Nature Materials, Vol. 6,pp. 908-915, (2007).
16. Kaji, H., et al., Engineering Systems for The Generation of Patterned Co-cultures for Controlling Cell–Cell Interactions.Biochim Biophys Acta, Vol. 1810, pp. 239-250, (2011).
17. Sarig Nadir, O., et al., Laser Photoablation of Guidance Microchannels into Hydrogels Directs Cell Growth in Three Dimensions. Biophysical Journal, Vol. 96, pp. 4743-4752, (2009).
18. Dalby, M., et al., The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder. Nature Materials, Vol. 6,pp. 997-1003, (2007).
19. Soper, S., et al., Peer Reviewed: Polymeric Microelectromechanical Systems.Analytical Chemistry, Vol. 72, pp. 642, (2000).
20. Madou, M., et al.,Design and Fabrication of CD-like Microfluidic Platforms for Diagnostics: Microfluidic Functions.Biomedical Microdevices, Vol3,pp. 245-254, (2001).
21. Lahann, J., et al., Reactive Polymer Coatings: A First Step toward Surface Engineering of Microfluidic Devices.Analytical Chemistry, Vol.75, pp. 2117-2122, (2003).
22. K. R. King, C.C.J., et al., Biodegradable Microfluidics. Advanced Materials.Vol. 16, pp.2007-2012, (2004).
23. Wang, H.-W., et al., Fabrication of Pillared PLGA Microvessel Scaffold Using Femtosecond Laser Ablation.International Journal of Nanomedicine, Vol. 7, pp.1865-1873, (2012).
24. Waldbaur, A., et al., Let There Be Chip-Towards RapidPrototyping of Microfluidic Devices: One-Step Manufacturing Processes. Analytical Methods, Vol.3,pp. 2681-2716, (2011).
25. Abgrall, P., et al., A Novel Fabrication Method of Flexible and Monolithic 3D Microfluidic Structures Using Lamination of SU-8 Films. Journal of Micromechanics and Microengineering, Vol. 16,pp. 113-121, (2006).
26. Liu, H., R. Liu, and Crooks, Three-Dimensional Paper Microfluidic Devices Assembled Using the Principles of Origami.Journal of the American Chemical Society, Vol. 133,pp. 17564-17566, (2011).
27. Zhang, M., et al., A Simple Method for Fabricating Multi-Layer PDMS Structures for 3D Microfluidic Chips. Lab on a Chip,Vol.10, pp. 1199-1203, (2010).
28. Bellan, L., et al., Fabrication of a Hybrid Microfluidic System Incorporating both Lithographically Patterned Microchannels and a 3D Fiber-Formed Microfluidic Network.Advanced Healthcare Materials, Vol. 1,pp. 164-167, (2012).
29. Wang, Y., et al., A Tough Biodegradable Elastomer.Nature Biotechnology, Vol. 20, pp. 602-606, (2002).
30. Bettinger, C., et al., Amino Alcohol-Based Degradable Poly(ester amide) Elastomers. Biomaterials, Vol. 29,pp. 2315-2325, (2008).
31. Vieira, A.C., et al., Mechanical Study of PLA–PCL Fibers During In VitroDegradation.Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4,pp. 451-460, (2011).
32. Kuncová Kallio, J., P. Kuncova Kallio, and Kallio, PDMS and its Suitability for Analytical Microfluidic Devices.2006 International Conference of the IEEE Engineering in Medicine and Biology Society, Vol 1, pp. 2486-2489, (2006)
33. Fiddes, L.K., et al.,A Circular Cross-Section PDMS Microfluidics System For Replication of Cardiovascular Flow Conditions. Biomaterials, Vol. 31,pp. 3459-3464, (2010).
34. Pomerantseva, I., et al., Degradation Behavior of Poly(glycerol sebacate).Journal of Biomedical Materials Research. Part A, Vol. 91,pp. 1038-1047, (2009).
35. Wang, Y., R. Kim, and Langer, In Vivo Degradation Characteristics of Poly(glycerol sebacate).Journal of Biomedical Materials Research, Vol. 66, pp. 192-197, (2003).
36. Vieira, A.C., et al., Development of Ligament Tissue Biodegradable Devices: A Review.Journal of Biomechanics, Vol. 42, pp. 2421-2430, (2009).
37. Rodriguez Galan, A., et al., Degradable Poly(ester amide)s for Biomedical Applications.Polymers, Vol. 3,pp. 65-99, (2011).
38. Wang, J., et al., Fully Biodegradable Airway Stents Using Amino Alcohol-Based Poly(ester amide) Elastomers.Advanced Healthcare Materials, Vol. 2,pp. 1329-1336, (2013).
39. Bettinger, C.J., et al., Three-Dimensional Microfluidic Tissue-Engineering Scaffolds Using a Flexible Biodegradable Polymer.Advanced Materials, Vol. 18, pp. 165-169, (2006).
40. Chen, Q.-Z., et al.,Characterisation of ASoft Elastomer Poly(glycerol sebacate) Designed to Match The Mechanical Properties of Myocardial Tissue.Biomaterials, Vol.29, pp. 47-57,(2008).
41. Merkel, T.C., et al., Gas Sorption, Diffusion, and Permeation in Poly(dimethylsiloxane).Journal of Polymer SciencePart B: Polymer physics,Vol. 38,pp. 415-434, (2000).
42. I D Johnston, D.K.M., C K L Tan and M C Tracey, Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering.Journal of Micromechanics and Microengineering, Vol. 24, (2014).
43. Wang, J., et al., Biodegradable Microfluidic Scaffolds for Tissue Engineering from Amino Alcohol-Based Poly(ester amide) Elastomers. Organogenesis, Vol. 6, pp. 212-216, (2010).
44. Rabih Zaouk, Benjamin Y. Park, and M.J. Madou, Introduction to Microfabrication Techniques. Methods In Molecular Biology. Vol. 321. pp. 5-15,(2006).
45. Whitesides, G., et al., Soft Lithography in Biology and Biochemistry.Annual Review of Biomedical Engineering, Vol. 3, pp. 335-373, (2001).
46. Choi, J., et al., Fabrication of Various Cross-Sectional Shaped Polymer Microchannels by ASimple PDMS Mold Based Stamping Method.Biochip Journal,Vol. 6, pp. 240-246,(2012).
47. Wang, G.-J., et al.,Fabrication of PLGA Microvessel Scaffolds with Circular Microchannels Using Soft Lithography.Journal of Micromechanics and Microengineering, Vol. 17, pp. 2000-2005, (2007).
48. Lewis, J., G. Lewis, and Gratson, Direct Writing in Three Dimensions.Materials Today, Vol. 7, pp. 32-39, (2004).
49. Cui, X., T. Cui, and Boland, Human Microvasculature Fabrication Using Thermal Ink-jet Printing Technology. Biomaterials, Vol. 30, pp. 6221-6227, (2009).
50. Malek, C. and M. Khan, Laser Processing for Bio-Microfluidics Applications (part I).Analytical and Bioanalytical Chemistry, Vol. 385, pp. 1351-1361, (2006).
51. Khan Malek, C. and M. Khan, Laser Processing for Bio-Microfluidics Applications (part II).Analytical and Bioanalytical Chemistry,Vol. 385, pp. 1362-1369,(2006).
52. D.Schaeffer, R., Fundamentals of Laser Micromachining.CRC Press. ISBN: 9781439860557,(2012).
53. D.Minteer, S., Microfluidic Technique Reviews and Protocols.Springer. ISBN: 9781588295170,(2006).
54. Thomas, R., Practical Guide to ICP-MS: A Tutorial for Beginners, Third Edition.CRC Press. ISBN: 1466555432, (2013)
55. Liu, Y., et al., 3D Femtosecond Laser Patterning of Collagen for Directed Cell Attachment. Biomaterials, Vol. 26, pp. 4597-4605, (2005).
56. Lim, D., et al., Fabrication of Microfluidic Mixers and Artificial Vasculatures Using AHigh-Brightness Diode-Pumped Nd:YAG Laser Direct Write Method.Lab on a chip, Vol. 3, pp. 318, (2003).
57. Hwang, S.Y., et al., Adhesion Assays of Endothelial Cells on Nanopatterned Surfaces within a Microfluidic Channel.Analytical Chemistry, Vol. 82, pp. 3016-3022, (2010).
58. Clark, P., et al., Topographical Control of Cell Behaviour: II. Multiple Grooved Substrata.Development, Vol. 108, pp. 635-644, (1990).
59. Choi, J., et al., Circumferential Alignment of Vascular Smooth Muscle Cells In ACircular Microfluidic Channel. Biomaterials, Vol. 35, pp. 63-70, (2014).
60. Chien, S., Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of The Cell. American Journal of Physiology.Heart and circulatory physiology, Vol. 292, pp. H1209-24, (2007).
61. Lamalice, L., F. Le Boeuf, and J. Huot, Endothelial Cell Migration During Angiogenesis.Circulation research,Vol. 100, pp. 782-94,(2007).
62. Akimoto, S., et al., Laminar Shear Stress Inhibits Vascular Endothelial Cell Proliferation by Inducing Cyclin-Dependent Kinase Inhibitor p21Sdi1/Cip1/Waf1.Circulation Research,Vol. 86, pp. 185-190,(2000).
63. Davies, P.F., et al., Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro. Proceedings of the National Academy of Sciences of the United States of America, Vol. 83, pp. 2114-2117, (1986).
64. Sherman, T.F.,On connecting Large Vessels to Small. The meaning of Murray's Law.The Journal of General Physiology,Vol. 78, pp. 431-53,(1981).
65. Wang, G.-J., Y.-F. Wang, and Hsu, Structure Optimization of Microvascular scaffolds.Biomedical Microdevices, Vol. 8, pp. 51-58, (2006).
66. Figure of liver. Available from: http://hlpic.hupo.org.cn/dblep/main.jsf.
67. Figure of blood vessel network. Available from: http://global.britannica.com/science/blood-vessel.
68. Density and viscousty of water at 25 ℃. Available from: http://www.hxu.edu.cn/partwebs/huaxuexi/qt/hxsj/cutable9-1.htm