簡易檢索 / 詳目顯示

研究生: 張展溢
Chang, Chan-Yih
論文名稱: 在矽基板上之氮化鎵高電子遷移率場效電晶體之基板模型建立與分析
Modeling and Analysis of GaN HEMTs on Silicon Substrates
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員: 邱煥凱
黃智方
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 氮化鎵基板模型
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵異質結構場效電晶體在高功率以及微波射頻方面廣泛的被使用。氮化鎵的崩潰電場與電子飄移速度高於矽,所以它在高功率與高速元件的應用上是一個非常重要的材料。在許多文獻裡,AlGaN/GaN HEMTs製作在碳化矽(SiC)或藍寶石(Sapphire)基板上有非常好的高頻特性,包括它有較高的功率輸出與低的雜訊。然而,藍寶石基板有熱傳導能力(Thermal conductivity)較差的缺點,所以在高功率操作上,使用它做為元件的基板較不合適。在製作價格方面,電晶體使用碳化矽或藍寶石基板比使用矽基板昂貴,相較於藍寶石或碳化矽基板,AlGaN/GaN HEMTs製作在矽基板上有價格便宜以及它可以製作較大面積元件的優勢。近年來研究指出氮化鎵高速電晶體提供了良好的直流(DC),不過它在高頻特性上與碳化矽或者藍寶石基板相對較差。我們推測主要原因可能是矽基板產生的寄生效應導致元件在高頻操作上的功率損耗,因此我們製作一個模型來分析氮化鎵電晶體的基板效應。
    首先我們製作出閘極長度為0.5 贡m、閘極寬度為2×50 贡m的AlGaN/GaN異質結構場效電晶體,它的截止頻率(fT)達到21 GHz與最大震盪頻率(fmax)為37 GHz。為了分析基板效應,本論文製作了一個新的小訊號模型,它包含了基板的寄生效應,並且此模型的參數萃取是使用方程式求解的方法,參數值不需要任何假設即可求出。另外,我們製作兩種不同緩衝層厚度與不同尺寸的元件來驗證此模型,並且利用此模型模擬其基板寄生效應影響元件在高頻操作上的程度。
    最後,我們根據模擬與量測結果作比較,驗證此模型的準確程度,再進一步的模擬出當元件去除基板效應之後,元件的fmax增加10%至20%,這個結果是如我們預期的。


    GaN-based transistors have been developed successfully for high power and microwave RF applications. Compared with Si, GaN has a higher breakdown field and electron drift velocity, which makes GaN-based devices an excellent candidate for such applications. It has been reported that AlGaN/GaN high electron mobility transistors (HEMTs) on SiC or sapphire substrates demonstrated excellent RF performance such as high output power and low high-frequency noise. However, the cost of both SiC and sapphire substrates are relatively higher compared to the silicon substrate. In addition, the poor thermal conductivity of the sapphire substrate also degrades the device performance under high power operation. Compared with the SiC and sapphire substrates, GaN-on-silicon is much more attractive with low cost, large size substrates, and good thermal conductivity. Recent publications have shown that GaN-based HEMTs grown on silicon substrate could reach good DC characteristics, but their RF performance is not as expected mainly due to the parasitics from the silicon substrate.
    In this work, a novel extraction methodology is proposed, allowing extraction of the small-signal model directly including the parasitic capacitance and resistance of substrate. The parameters of substrate parasitics can be extracted by solving the analytical equations without any assumption. The sub-micron AlGaN/GaN HEMTs are fabricated using the in-house developed technology. With a 0.5-贡m gate length and a width of 100 贡m, the device demonstrated fT= 21 GHz and fmax= 37 GHz on high resistivity silicon substrates. The proposed modeling approach are applied to several types of devices with different thicknesses of the GaN buffer layer. Based on the extracted small-signal equivalent circuit models, the fmax could be improved by 10 to 20 percent if the substrate parasitics are removed.

    誌謝 ii ABSTRACT iii 摘要 iv 目錄 v 圖目錄 vii 表目錄 x 第1章 前言 1 1.1 簡介 1 1.2 氮化鎵異質接面電晶體簡介 1 1.2.1 功率元件與寬能隙半導體 2 1.2.2 飽和速度以及電子遷移率 3 1.2.3 臨界電場以及導通電阻 4 1.3 AlGaN/GaN 異質結構場效電晶體 5 1.3.1 元件結構 5 1.3.2 GaN緩衝層設計 6 1.3.3 AlGaN layer 考量 6 第2章 元件模型架構 8 2.1 氮化鎵元件模型架構 8 2.2 基板耦合效應 10 2.2.1 元件內部耦合效應(Device-Level Intra-Device Substrate Coupling) 10 2.2.2 蝕刻矽基板結構的文獻回顧 (Literature review) 11 2.3 總結 14 第3章 元件製作及佈局設計 15 3.1 蝕刻平臺製作(Mesa isolation) 17 3.2 微影製程(Lithography) 18 3.3 金屬襯墊製作(Metal contact) 20 3.3.1 歐姆接觸(Ohmic contact) 20 3.3.2 表面處理 21 3.4 剝離(Lift-off) 22 3.5 閘極製作(Schottky gate) 22 3.6 快速退火製程(Rapid Thermal Annealing) 23 3.7 鈍化層製作(passivation) 23 3.8 元件製作規格與佈局設計 24 3.9 總結 27 第4章 基板模型分析與建立 28 4.1 基板模型分析(Substrate Model Analysis) 28 4.1.1 外部參數之萃取及解嵌入(Extract parameter and de-embedding) 28 4.1.2 基板模型建立(Substrate Model Analysis) 33 4.1.3 Y參數分析 (Y-Parameter Analysis) 35 4.2 參數萃取(Parameter Extraction Method) 41 4.3 總結 43 第5章 晶片量測與分析 45 5.1 測試元件描述 (Test Key Design) 45 5.2 量測結果以及模擬 47 5.2.1 量測結果 47 5.2.2 元件模擬與比較 54 5.3 總結 58 第6章 結論 59 6.1 結論 59 REFERENCES 60

    [1] J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, “AlGaN/GaN HEMT with 300 GHz fmax,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 195–197, Mar. 2010.
    [2] T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “High-power AlGaN/GaN HEMTs for Ka-band applications,” IEEE Electron Device Lett., vol. 26, no. 11, pp. 781–783, Nov. 2005.
    [3] S. Tirelli, D. Marti, H. Sun, A. R. Alt, H. Benedickter, E. L. Piner, and C. R. Bolognesi, “107-GHz (Al,Ga)N/GaN HEMTs on Silicon With Improved Maximum Oscillation Frequencies,” IEEE Electron Device Letters, vol. 31, no. 4, pp. 296–299, April 2010.
    [4] H. Sun, A. R. Alt, H. Benedickter, and C. R. Bolognesi, “Highperformance 0.1- 贡m gate AlGaN/GaN HETMs on silicon with low-noise figure at 20 GHz,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 107–109,
    Feb. 2009.
    [5] D. Xiao, D. Schreurs, W. De Raedt, J. Derluyn, M. Germain, B. Nauwelaers, and G. Borghs, “Detailed analysis of parasitic loading effects on power performance of GaN-on-silicon HEMTs,” Solid State Electron., vol. 53, no. 2, pp. 185–189, Feb. 2009.
    [6] Jarndal and G. Kompa, “A new small signal model parameter extraction method applied to GaN devices,” presented at the IEEE MTT-S Int. Microwave Symp., Long Beach, CA, Jun. 2005.
    [7] L. F. Eastman and U. K.Mishra, “The toughest transistor yet,” IEEE spectrum, 39(5), pp. 28-33, 2002.
    [8] Ambacher, “Growth and applications of group III-nitrides, ” J. Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
    [9] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
    [10] B. Gelmont, K. Kim, and M. Shur, “Monte Carlo Simulation of Electron Transport in Gallium Nitride”, J. Appl. Phys., 74 (3), pp. 1818-1821, 1993.
    [11] B. J. Baliga, "Trends in power semiconductor devices," IEEE Transaction on Electron Devices, 43(10), pp. 1717-1731, 1996.
    [12] J. L. Hudgins, G. S. Simin, E.Santi and M.A. Khan, ”An Assessment of Wide Bandgap Semiconductors for Power Devices”, IEEE trans. on power electronics, 18(3), pp. 907-914, 2003.
    [13] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151–1159, July 1988.
    [14] M. Berroth and R. Bosch, “High-frequency equivalent circuit of GaAs FET’s for large-signal applications,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 2, pp. 224–229, Feb. 1991.
    [15] J. Lu, Y. Wang, L. Ma, and Z. Yu, “A new small-signal modeling and extraction method in AlGaN/GaN HEMTs,” Solid-State Electron., vol. 52, no. 1, pp. 115–120, Jan. 2008.
    [16] R. Dimitrov, V. Tilak, W. Yeo, B. Green, H. Kim, J. Smart, E. Chumbes, J. R. Shealy, W. Schaff, L. F. Eastman, C. Miskys, O. Ambacher, and M. Stutzmann, “Influence of oxygen and methane plasma on the electrical properties of undoped AlGaN/GaN heterostructures for high power transistors,” Solid-State Electron., vol. 44, no. 8, pp. 1361–1365, 2000.
    [17] C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN,” Appl. Phys.Lett., 1997.
    [18] R. Vetury, N.-Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, pp. 560–566, Mar.2001.
    [19] Binari S C, Klein P B and Kazior T E, “Trapping effects in GaN and SiC microwave FETs,” Proc. IEEE 90 1048, 2002.
    [20] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R and Eastman L F, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” IEEE Electron Device Lett. 21 268 , 2000.
    [21] S. Arulkumaran, G. I. Ng, and Z. H. Liu, “Effect of gate-source and gate-drain Si3N4 passivation on current collapse in AlGaN/GaN high-electron-mobility transistors on silicon,” Appl. Phys. Lett. 90, 173504 (2007).
    [22] S. M. Sze, Physics of Semiconductor Devices. New YorK: Wiley, 1981.
    [23] H. F. Sun, A. R. Alt, H. Benedickter, and C. R. Bolognesi, “High performance 0.1 μm gate AlGaN/GaN HEMTs on silicon with low-noise figure at 20 GHz,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 107–109, Feb. 2009.
    [24] J. Chung, E. Piner, J. Roberts, and T. Palacios, “New technologies for improving the high frequency performance of AlGaN/GaN high electron mobility transistors,” in Proc. Int. Conf. Advances in Electronics and Micro-electronics (ENICS’08), Valencia, Spain, Sept. 29–Oct. 4, 2008, pp. 66–71.
    [25] F. Qian, J. H. Leach, and H. Morkoc, “Small signal equivalent circuit modeling for AlGaN/GaN HFET: Hybrid extraction method for determining circuit elements of AlGaN/GaN HFET,” Proc. IEEE, vol. 98, no. 7, pp. 1140–1150, Jul. 2010.
    [26] A. Jarndal and G. Kompa, “A new small signal model parameter extraction method applied to GaN devices,” presented at the IEEE MTT-S Int. Microwave Symp., Long Beach, CA, Jun. 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE