簡易檢索 / 詳目顯示

研究生: 鄭樹人
Shu-Jen Cheng
論文名稱: 可動結構調變光子晶體設計與製作
Design and Fabrication of Movable Photonic Crystal Device with Tuning Mechanism
指導教授: 劉承賢
Cheng-Hsien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 55
中文關鍵詞: 光子晶體可調變微機電光學
外文關鍵詞: photonic crystal, tunable, MEMS, optical
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光子晶體具有相當優異的光子禁帶,能夠限制在某一特定的頻率範圍的光通過光子晶體時停止傳播。這些由兩種不同介電常數材料做週期性排列形成的結構,依週期排列的維度又可分為一維、二維及三維的光子晶體,布拉格反射鏡就是一種最常見的一維光子晶體。光子晶體除了能禁止特定頻率的電磁波進行傳播外,當在結構中加入點缺陷便可以形成共振腔,而加入了線缺陷則可以做為波導使用。目前有許多光子晶體的應用,比方低耗損的介電材反射鏡、光子晶體微諧振腔、極窄頻濾波器及與光子晶體整合的高效率雷射等。一旦這些元件的開發技術成熟,將有助於實現由光子晶體與其他主動、被動元件構成的高效率積體光路系統。
    傳統光子晶體的元件因為著重在排列的設計,多半為靜態結構且因本身缺少調控機制,應用面相當有限,而微機電技術的進步與奈米技術的整合,將有助於延伸光子晶體的應用,尤其在動態需求方面,目前利用微機電開發製作的微小光學元件已經行之有年,與電子電路╱半導體製程最大不同之處就在可動元件的製作。在本文中,我們提出一個以微機電技術為基礎、整合光子晶體的可調變的致動裝置,它不僅解決光子晶體靜態結構的限制,更因加入調變功能,當被應用時,波長的選擇更有彈性。


    Periodic photonic crystal composed of two dielectric materials forms a photonic band-gap, and photons within this band-gap cannot propagate through the structure. This excellent property has made photonic crystals useful for communication applications such like narrow-band filters, frequency-selective mirrors, and high-Q cavities. Nowadays several theoretical researches and fabrication methods have been proposed. There are more and more evidences that the integration of these photonic crystals, passive and active components will be helpful to realize complex optical circuits.
    Conventional photonic crystals are usually designed as stationary structures. Therefore, the applications to various fields are limited. It is thanks to the aid of MEMS technology and nano fabrication techniques that we are able to extend the applications of photonic crystals. So far, many tunable photonic crystal devices have been proposed. We here present a novel MEMS-based tunable photonic crystal device. It not only overcomes limits that exist in conventional photonic crystals, but provides more flexible and extensive applications.

    1. Introduction - 1 - 1.1 Background - 1 - 1.2 Survey of Literatures - 2 - 1.2.1 The Existence of 3D Photonic Crystal Band-gap - 2 - 1.2.2 Channel Waveguides Fabricated in 2D Photonic Crystals of Si Nanopillars - 3 - 1.2.3 Nano-Electro-Mechanical Photonic Crystal Switch - 4 - 1.2.4 Strain-Tuning of Periodic Optical Devices - 6 - 2. Device Development - 9 - 2.1 FDTD Method - 9 - 2.2 Design Concept - 12 - 2.3 Analysis and Simulation Results - 15 - 2.3.1 Mechanical Simulations and Analysis - 15 - 2.3.2 Optical Simulations and Analysis - 17 - 3. Fabrication Process - 30 - 3.1 Process Flow - 30 - 3.2 Fabrication Issues - 35 - 3.2.1 Insulation Layer - 35 - 3.2.2 Sacrificial Layer - 36 - 3.2.3 E-beam Writer Patterning and Etching - 37 - 3.2.4 Structure Release - 37 - 3.3 Modified Design - 38 - 4. Fabrication and Experiment Results - 43 - 4.1 Fabrication Results - 43 - 4.1.1 SEM Pictures - 44 - 4.2 Experiment Results - 47 - 4.2.1 Mechanical Measurement - 47 - 4.2.2 Optical Measurement - 49 - 5. Conclusion and Future Work - 51 - References - 54 -

    [1] Ming-Chang Mark Lee, Dooyoung Hah, Erwin K. Lau, Hiroshi Toshiyoshi, Ming Wu,”Nano-Electro-Mechanical Photonic Crystal Switch”, Optical Society of America, 1999.
    [2] Tetsuya Tada, Vladimir V. Poborchii and Toshihiko Kanayama, “Channel Waveguides Fabricated in 2D Photonic Crystals of Si Nanopillars”, Microelectronic Engineering 63 (2002) 259-265.
    [3] Chee Wei Wong, Yong Bae Jeon, George Barbastathis and Sang-Gook Kim. “Strain-Tuning of Periodic Optical Devices: Tunable Gratings and Photonic Crystals”, Transducers ’03, Boston, 2B1.3.
    [4] J. D. Joannopoulos, Pierre R. Villeneuve and Shanhui Fan, “Photonic Crystals”, Solid State Communications, Vol. 102, No.2-3, pp. 165-173,1997.
    [5] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey, 1995.
    [6] Susumu Noda, “Three-dimensional photonic crystals operating at optical wavelength region”, Physica B 279(2000) 142-149.
    [7] Bae-Ian Wu, “Analysis of Photonic Crystal Filters by the Finite-Difference Time-Domain Technique”, M.S. thesis, Massachusetts Institute of Technology, 1999.
    [8] Marko Lončar, Theodor Doll, Jelena Vučković, and Axel Scherer, “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides”, Journal of Lightwave Technology, Vol. 18, No. 10, October 2000.
    [9] P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity”, IEE Proceedings – Optoelectronics, vol. 145, pp. 384 (1998)
    [10] Susumu Noda, Takashi Asano, and Masahiro Imada, “Semiconductor Photonic Crystals and Devices”, IEEE 2002.
    [11] Attila Mekis, J. C. Chen, I. Kurland, Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides”, Physical Review Letters, pp.3787-3790, 1996.
    [12] Naoyuki Fukaya, Daisuke Ohsaki and Toshihiko Baba, “Two-dimensional Photonic Crystal Waveguides with 60° Bends in a Thin Slab Structure”, Jan. J. Appl. Phys. Vol. 39 (2000) pp.2619-2623
    [13] Susumu Noda, Masahiro Imada, Makoto Okano, Shinpei Ogawa, Masamitsu Mochizuki, and Alongkarn Chutinan, “Semiconductor Three-Dimensional
    and Two-Dimensional Photonic Crystals and Devices”, IEEE Journal of Quantum Electronics, Vol. 38, No. 7, July 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE