研究生: |
邱上睿 Chiu, Shang-Jui |
---|---|
論文名稱: |
利用射頻磁控濺鍍系統製備鉍鐵氧化物/鈦酸鍶超晶格薄膜結構與性質之研究 Preparation and characterization of artificial BiFeO3/SrTiO3 superlattices by radio-frequency sputtering |
指導教授: |
喻冀平
黃嘉宏 李信義 |
口試委員: |
杜繼舜
周振嘉 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 142 |
中文關鍵詞: | 鉍鐵氧化物 、超晶格 、濺鍍 、應變效應 、鐵電性質 |
外文關鍵詞: | BiFeO3, superlattice, sputtering, strain effect, ferroelectric property |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是探討應變效應,參雜效應以及底電極對於鉍鐵氧化物/鈦酸鍶超晶格之影響。鉍鐵氧化物/鈦酸鍶超晶格,及鑭參雜鉍鐵氧化物/鈦酸鍶超晶格使用雙靶射頻磁控濺鍍技術以最佳參數法製鍍。藉由X光繞射及反射圖譜,我們可以確認超晶格薄膜具有良好磊晶性質。鉍鐵氧化物/鈦酸鍶超晶格於本實驗中被證實當薄膜成長溫度介於600到700度之間時,具有優良的結晶性、趨近於臨界應變值(~1.42%)之應變量(~1.3%)、以及優良之鐵電性質。由超晶格薄膜之殘留極化量(Pr) 、壓電係數(d33) 以及漏電流量測結果顯示,超晶格之鐵電性質可藉由控制薄膜應變量改善。藉由控制超晶格介層之厚度於極薄的情況,我們可以維持超晶格薄膜之pseudo-cubic結構,在此種類似tetragonal之結構下,超晶格薄膜得以藉由應變效應有效改善薄膜鐵電性質。鉍鐵氧化物超晶格結構藉由適度鑭參雜(5 atomic %)於鉍鐵氧化物層可以改善薄膜整體的漏電性質。當鑭參雜鉍鐵氧化物超晶格薄膜以相同製程參數被鍍著於鎳酸鑭底電極上時,其鐵電遲滯曲線有著明顯的改善;極化曲線有著明顯的飽和現象。此外壓電係數(d33)結果顯示超晶格薄膜鍍著於鎳酸鑭底電極可改善鐵電性質,這證明薄膜鍍著於鎳酸鑭底電極上,有助於量測其本質之鐵電性質而不受過大的底電極電阻干擾。
The objective of the study is to investigate effects of strain state, ion doping, and bottom electrode on BiFeO3 (BFO)/SrTiO3 (STO) superlattice structure. The BFO/STO and La-doped BFO/STO superlattice were deposited by radio frequency magnetron sputtering with optimized coating conditions. The epitaxial growth of superlattice films was confirmed by X-ray reflection and diffraction patterns. The BFO/STO superlattice with a well defined crystal structure, large strain state ~1.3% which approaches the critical value of 1.42% and large remnant polarization value at deposition temperature 600-700oC. The measurements of Pr values, piezoelectric coefficient d33, and the leakage current density of superlattice films demonstrate that ferroelectric properties of BFO/STO superlattice thin films could be enhanced with increasing in-plane strain. The BFO/STO superlattice with small BFO/STO sublayer thickness exhibits a pseudo-cubic structure without strain relaxation. Similar with tetragonal structure, superlattice films with pseudo-cubic structure exhibit a clear strain improvement on ferroelectric properties. The substitution of La (5 atomic %) in BFO sublayer can improve the leakage property of superlattice films. The La-doped BFO/STO superlattice films exhibited excellent and saturated hysteresis loops, larger piezoelectric coefficient (d33) on LaNiO3 (LNO) electrode than films on Nb-doped doped STO substrate. High leakage property of La-doped BFO sublayer and suitable resistivity of LNO bottom electrode are the major factor of enhancement of ferroelectric properties of superlattice films.
S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D.G. Schlom, Y.J. Lee, Y.H. Chu, M.P. Cruz, Q. Zhan, T. Zhao and R. Ramesh, “Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications ”, Appl. Phys. Lett. 87, 102903 (2005).
2. J. Zhang, D. Cui, H. Lu, Z. Chen, Y. Zhou, L. Li, G. Yang, S. Martin and P. Hess, Jpn. “Structural Behavior of Thin BaTiO3 Film Grown at Different Conditions by Pulsed Laser Deposition”, J. Appl. Phys. 362, 76 (1997).
3. C.S. Hsi, F.Y. Hsiao, N.C. Wu and M.C. WangJpn, “Dielectric Properties of Nanocrystalline Barium Titanate Thin Films Deposited by RF Magnetron Sputtering”, J. Appl. Phys. 42, 544 (2003).
4. N.A. Hill,” Why are there so few magnetic ferroelectrics?”, J. Phys. Chem. B, 104, 6694 (2000).
5. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, “Magnetic control of ferroelectric polarization”, Nature (London) 426, 55 (2003).
6. W. Eerenstein, N.D. Mathur and J.F. Scott,” Multiferroic and magnetoelectric materials”, Nature (London) 442, 759 (2006).
7. Z.J. Huang, Y. Cao, Y.Y. Sun, Y.Y. Xue and C.W. Chu, “Coupling between the ferroelectric and antiferromagnetic orders in YMnO3”, Phys. Rev. B. 56, 2623 (1997).
8. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha and S.W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature, 429, 392 (2004).
9. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu and N.B. Ming,” Substitution-induced phase transition and enhanced multiferroic properties of Bi1−xLaxFeO3 ceramics ”, Appl. Phys. Lett. 88, 162901 (2006).
10. G.L. Yuan and S.W. Or,” Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−xNdxFeO3 (x = 0–0.15) ceramics”, Appl. Phys. Lett. 88, 062905 (2006).
11. S.K. Singh, K. Sato, K. Maruyama and H. Ishiwara, “Cr-Doping Effects to Electrical Properties of BiFeO3 Thin Films Formed by Chemical Solution Deposition”, Jpn. J. Appl. Phys. 45, 37. (2006).
12. Y.H. Lee, J.M. Wu and C.H. Lai, “Influence of La doping in multiferroic properties of BiFeO3 thin films”, Appl. Phys. Lett. 88, 042903 (2006).
13. B. Yu, M. Li, J. Liu, D. Guo, L. Pei and X. Zhao, “Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics”, J. Phys. D: Appl. Phys. 41, 065003 (2008).
14. S.K. Singh, H. Ishiwara and K. Maruyama, “Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition”, Appl. Phys. Lett. 88, 262908 (2006).
15. C.F. Chung, J.P. Lin and J.M. Wu, “Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films”, Appl. Phys. Lett. 88, 242909. (2006).
16. J.K. Kim, S.S. Kim, W.J. Kim, A.S. Bhalla and R. Guo, “Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition”, Appl. Phys. Lett. 88, 132901 (2006).
17. W.M. Zhu and Z.G Ye, “Improved dielectric and ferroelectric properties of high Curie temperature (1−x)BiFeO3 – xPbTiO3ceramics by aliovalent ionic substitution”, J. Appl. Phys. Lett. 89, 232904 (2006).
18. K. Ueda, H. Tabata and T. Kawai, “Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature”, J. Appl. Phys. Lett. 75, 555 (1999).
19. J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser and R. Ramesh, “Epitaxial BiFeO3 thin films on Si”, Appl. Phys. Lett. 85, 2574 (2004).
20. R. Ramesh, W.K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J.M. Tarascon and V.G. Keramidas, “Fatigue and retention in ferroelectric Y‐Ba‐Cu‐O/Pb‐Zr‐Ti‐O /Y‐Ba‐Cu‐O heterostructures”, Appl. Phys. Lett. 61, 1537 (1992).
21. M.S. Chen, T.B. Wu and J.M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”, Appl. Phys. Lett. 68, 1430 (1996).
22. Y.R. Luo and J.M. Wu, “BaPbO3 perovskite electrode for lead zirconate titanate ferroelectric thin films”, Appl. Phys. Lett. 79, 3669 (2001).
23. H.R. Wenk, B. Andrei, Materials: Their Constitution and Origin. NY: Cambridge University Press (2004).
24. J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, (1990).
25. R.E. Newnham, Structure-Property Reactions, Springer Verlag, New York, (1975).
26. B. Ruette, MS thesis, Virginia Tech (2003).
27. R. Seshadri and N.A. Hill, “Visualizing the role of Bi 6s "Lone pairs" in the off-center distortion in ferromagnetic BiMnO3”, Chem. Mater. 13, 2892 (2001).
28. K.M. Ok., N. S.P Bhuvanesh and P.S. Halasyamani,” Bi2TeO5: Synthesis, structure, and powder second harmonic generation properties”, Inorg. Mater. 40, 1978 (2001).
29. R.E. Cohen and H. Krakauer, “Electronic structure studies of the differences in ferroelectric behavior of BaTiO3 and PbTiO3”, Ferroelectrics 136, 65 (1992).
30. R.E. Cohen, “Origin of ferroelectricity in Perovskite oxides”, Nature (London) 358, 136 (1992).
31. N.A. Hill and S. Sanvito, “First principles study of intrinsic defects in (Ga,Mn)As”, J. Magn. Magn. Mater. 242, 441 (2002).
32. M. Atanasov and D. Reinen, “Density functional studies on the lone pair effect of the trivalent group (V) elements: I. Electronic structure, vibronic coupling, and chemical criteria for the occurrence of lone pair distortions in AX(3) molecules (A=N to Bi; X=H, and F to I)”, J. Phys.Chem. A. 105, 5450 (2001).
33. U.V. Waghmare and N.A. Spaldin, “First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb”, Phys. Rev. B. 67, 125111 (2003).
34. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig and R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 299, 1719 (2003).
35. Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata and M. Sakata, ”Evidence for Pb-O covalency in tetragonal PbTiO3”, Phys. Rev. Lett. 87, 217601 (2001).
36. G.O. Jones and P.A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3”, Acta Crystallogr. B 58, 168 (2002).
37. L.H. Parker and A.F. Tasch, “Ferroelectric materials for 64MB and 256NB DRAMS”, IEEE CIRCUIT DEVICES. 6 17, (1990).
38. R. Ramesh and N.A. Spaldin, “Multiferroics: progress and prospects in thin films”, Nat. Mater. 6, 21 (2007).
39. N.A. Spaldin and M. Fiebig, “The renaissance of magnetoelectric multiferroics”, Science 309, 391 (2005).
40. M. Fiebig, T. Lottermoser, D. Frohlich, AV. Goltsev and R. Pisarev,” Observation of coupled magnetic and electric domains”, Nature 419, 818 (2002).
41. S.W. Cheong and M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity”, Nat. Mater. 6, 13 (2007).
42. W. Prellier, M.P. Singh and P. Murugavel, “The single-phase multiferroic oxides: from bulk to thin film”, J. Phys. Condens. Matter 17, R803 (2005).
43. N.A. Hill and A. Filippetti, “Why are there any magnetic ferroelectrics?”, J. Mag. Mag. Mater. 242, 976 (2002).
44. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya and N.N. Kranik, ”New ferroelectrics of complex composition”, Sov. Phys. Solid State 2, 2651 (1961).
45. G.A. Smolenskii, V.M. Yudin, E.S. Sher and Y.E. Stolypin, “Antiferromagnetic properties of some Perovskites”, Sov. Phys. J ETP-USSR. 16, 622 (1963).
46. C. Ederer, N.A. Spaldin, “Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite”, Phys. Rev. B 71, 224103 (2005).
47. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott and N.D. Mathur, “ Comment on "Epitaxial BiFeO3 multiferroic thin film heterostructures"”, Science 307, 1203a (2005).
48. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu and Z.G. Liu, “ Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett. 84, 1731 (2004).
49. X. Qi, M. Wei, Y. Lin, Q. Jia, D. Zhi, J. Dho, M.G. Blamire and J.L. MacManus-Driscoll, “High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films”, Appl. Phys. Lett. 86, 071913 (2005).
50. J.R. Teague, R. G.erson and W.J. James, “Dielectric hysteresis in single crystal BiFeO3 ”, Solid State Comm. 8, 1073 (1970).
51. F. Bai, J. Wang, M. Wuttig, J. Li, N. Wang, A.P. Pyatakov, A.K. Zvezdin, L.E. Cross and D. Viehland, “ Destruction of spin cycloid in (111)(c)-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization”, Appl. Phys. Lett. 86, 032511 (2005).
52. J. Li, J. Wang, M. Wuttig, R. Ramesh, H. Zheng, N. Wang, B. Ruette, A. P. Pyatakov, A.K. Zvezdin and D. Viehland, “Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions”, Appl. Phys. Lett. 84, 5261 (2004).
53. M.M. Kumar, V.R. Palker, K. Srinivas and S.V. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic”, Appl. Phys. Lett. 76, 2764 (2000).
54. V.R. Palkar, J. John and R. Pinto, “Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films”, Appl. Phys. Lett. 80, 1628 (2002).
55. V.R. Palkar, K.G. Kumara and S. K. Malik,” Observation of room-temperature magnetoelectric coupling in pulsed-laser-deposited Bi0.6Tb0.3La0.1FeO3 thin films”, Appl. Phys. Lett. 84, 2856 (2004).
56. V.R. Palkar, D.C. Kundaliya, S.K. Malik and S. Bhattacharya, “Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system”, Phys. Rev. B 69, 212102 (2004).
57. K.Y. Yun, M. Noda and M. Okuyama, “Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition”, Appl. Phys. Lett. 83, 3981 (2003).
58. K.Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata and K. Saito, “Structural and multiferroic properties of BiFeO3 thin films at room temperature”, J. Appl. Phys. 96, 3399 (2004).
59. K.Y. Yun, D. Ricinschi, T. Kanashima, M. Noda and M. Okuyama, “Giant ferroelectric polarization beyond 150 mμC/cm2 in BiFeO3 thin film”, Jpn. J. Appl. Phys. 43, L647 (2004).
60. S. Lakovlev, C.H. Solterbeck, M. Kuhnke, and M. Es-Souni, “Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization”, J. Appl. Phys. 97, 094901 (2005).
61. H. Uchida, R. Ueno, H. Nakaki, H. Funakubo, and S. Koda, “Ion modification for improvement of insulating and ferroelectric properties of BiFeO3 thin films fabricated by chemical solution deposition”, Jpn. J. Appl. Phys. 44, L561 (2005).
62. T. Fujii, S. Jinzenji, Y. Asahara, A. Kajima and T. Shinjo, “Magnetic properties of BiFeO3-BaTiO3 and BiFeO3-PbTi(Zr)O3 glassy sputtered films”, J. Appl. Phys. 64, 5434 (1988).
63. B.U.M. Rao and G. Srinicasan, “Static and high frequency magnetic properties of amorphous BiFeO3-CuFe2O4 compounds”, J. Appl. Phys. 70, 6317 (1991).
64. M.M. Kumar, S. Srinath, G.S. Kumar and S.V. Suryanarayana,” Spontaneous magnetic moment in BiFeO3-BaTiO3 solid solutions at low temperatures”, J. Magn. Magn. Mater. 188, 203 (1998).
65. T. Kanai, S.I. Ohkoshi, S. Nakajima, T. Watanabe and K. Hashimoto, “A ferroelectric ferromagnet composed of (PLZT)(x)(BiFeO3)(1-x) solid solution”, Adv. Mater. 13, 487 (2001).
66. C. Ederer and N.A. Spaldin, “Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite”, Phys. Rev. B 71, 060401 (2005).
67. F. Zavaliche, S.Y. Yang, T. Zhao, Y.H. Chu, M.P. Cruz, C.B. Eom and R. Ramesh, “ Multiferroic BiFeO3 films: domain structure and polarization dynamics”, Phase Transit. 79, 991 (2006).
68. S. Sarraute, J. Ravez, R. Vonder Muhll, G.. Bravic, R.S. Feigelson and S.C. Abrahams, “Structure of ferroelectric Pb5Al3F19 at 160 K, polarization reversal and relationship to ferroelectric Pb5Cr3F19 at 295 K”, Acta Cryst. B 52, 72 (1996).
69. S.V. Kiselev, R.P. Ozerov and G.S. Zhdanov, “Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction”, Sov. Phys. 7, 742 (1963).
70. N.N. Krainik., N.P. Khuchua, V.V. Zhdanova and V.A. Esveev, “Phase transitions in BiFeO3”, Sov. Phys. 8, 654 (1966).
71. I.G. Ismailzade, Soviet Sov. Phys. 11, 747 (1967).
72. C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson and W. J. James,” Atomic structure of BiFeO3”, Solid state comm. 7, 701 (1969).
73. P. Fischer, M. Polomska, I. Sosnowska and M. Szymanski,”Temperature -dependence of the crystal and magnetic structure of BiFeO3”, J. Phys. C: Solid State Phys. 13, 1931 (1980).
74. A.Word, B. Post and E. Banks,” Rare earth nickel oxide”, J.Am.Chem.Soc.70, 4911(1957).
75. C. Guerrero, F. Sanchez, C. Ferrater, J. Rddan, M.V. Garcia and M. Varela,” Pulsed laser deposition of epitaxial PbZrxTi1-xO3 ferroelectric capacitors with LaNiO3 and SrRuO3 electrodes”, Appl. Surf. Sci. 168, 219 (2000).
76. M.S. Chen, J.M. Wu and T.B. Wu, ”Effect of (100)-Textured LaNiO3 electrode on crystallization and properties of Sol-Gel-Derived Pb(Zr0.53Ti0.47)O3 thin films”, Jpn. J. Appl. Phys. 34, 4870 (1995).
77. C.M. Wu and T.B. Wu,” Effects of LaNiO3 conductive buffer layer on the structural and electrical characteristics of Ba0.4Sr0.6TiO3 thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys. 36, 1164 (1997).
78. T.F. Tseng, K.S. Lin, T.B. Wu and I.N. Lin,” Effect of LaNiO3/Pt double layers on the characteristics of (PbxLa1-x)(ZryTi1-y)O3 thin films”, Appl. Phys. Lett. 68, 2505 (1996).
79. A. Li, C. Ge, P. Lu, D. Wu and S. Xiong, ” Fabrication and electrical properties of sol-gel derived BaTiO3 films with metallic LaNiO3 electrode”, Appl. Phys. Lett. 70, 1616 (1997).
80. K.M. Satyalaskshmi and R.M. Mallya,” Epitaxial metallic LaNiO3 thin films grown by pulsed laser deposition”, Appl. Phys. Lett. 62, 1233 (1993).
81. K.V.R. Prasad, K.B.R.Varma and A.R. Raju,” Growth and ferroelectric properties of Bi2VO5.5 thin films with metallic LaNiO3 electrodes”, Appl. Phys Lett. 63, 1898 (1993).
82. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui and A. Burger,” Magnetic and electrical properties of single-phase multiferroic BiFeO3”, J. Appl. Phys. 97, 093903 (2005).
83. X.D. Qi, J. Dho, R. Tomov, M.G. Blamire and J.L. MacManus-Driscoll,” Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3”, Appl. Phys. Lett. 86, 062903 (2005).
84. H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J.P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson and M. Viret, ” Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films”, Appl. Phys. Lett. 87, 072508 (2005).
85. Y.K. Jun , W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim and S. H. Hong,” Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics”, Solid State Commun. 135, 133 (2005).
86. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee and W. Joe,” Lanthanum-substituted bismuth titanate for use in non-volatile memories”, Nature 401, 682 (1999).
87. V.R. Palkar, D.C. Kundaliya and S.K. Malik,” Effect of Mn substitution on magnetoelectric properties of bismuth ferrite system”, J. Appl. Phys. 93, 4337 (2003).
88. D. Lee, M.G. Kim, S. Ryu, H.M. Jang and S.G. Lee,” Epitaxially grown la-modified BiFeO3 magnetoferroelectric thin films”, Appl. Phys. Lett. 86, 222903 (2005).
89. H.N. Al-Shareef, A.I. Kingon, X. Chen, K.R. Buller, and O. Auciello,” Contribution of electrodes and microstructures to the electrical properties of Pb(Zr0.53Ti0.47)O3 thin films capacitors”, J. Mater. Res. 9, 2968 (1994).
90. D.P. Vijat and S.B. Desu,” Electrodes for PbZr xTi1-x O 3 Ferroelectric Thin Films”, J. Electrochem. Soc. 140, 2640 (1993).
91. J.H. Kim, H. Funakubo and H. Ishiwara,” Comparison of Ferroelectric and Insulating Properties of Mn-Doped BiFeO3 Films Formed on Pt, SrRuO3/Pt, and LaNiO3/Pt Bottom Electrodes by Radio-Frequency Sputtering”, Jpn. J. Appl. Phys. 50, 051501 (2011).
92. J. Wu and J. Wang, J,” Improved ferroelectric behavior in (110) orientedBiFeO3 thin films”, Appl. Phys. 107, 034103 (2010).
93. W.B. Wu, K.H. Wong and P.W. Chan,” Epitaxial growth of a-axis oriented YBa2Cu3O7-y/LaNiO3 heterostructures on (100) SrTiO3 by pulsed laser deposition”, Physica C 297, 247 (1998).
94. N. Wakiya, T. Azuma, K. Shinozaki and N. Mizutani,” Low-temperature epitaxial growth of conductive LaNiO3 thin films by RF magnetron sputtering”, Thin Solid Films 410, 114 (2002).
95. C.C. Yang, M.S. Chen, T.J. Hong, C.M. Wu and T.B. Wu,” Preparation of (100)‐oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3”, Appl. Phys. Lett. 66, 2643 (1995).
96. R. Ramesh, H. Gilchrist, T. Sands, J.M. Tarascon and V.G. Keramidas,” Ferroelectric La‐Sr‐Co‐O/Pb‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on silicon via template growth”, Appl. Phys. Lett. 63, 3592 (1993).
97. Q. Gan, R.A. Rao and C.B. Eom,” Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films”, Appl. Phys. Lett. 72, 978 (1998).
98. W. Chang, J.S. Horwitz, A.C. Carter, J.M. Pond, S.W. Kirchefer, C.M. Gilmore and D. B. Chrisey,” The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films”, Appl. Phys. Lett. 74, 1033 (1999).
99. B.H. Park, E.J. Peterson, Q.X. Jia, J. Lee, X. Zeng, W. Si and X.X. Xi,” Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films”, Appl. Phys. Lett. 78, 533 (2001).
100. H.C. Li, W. Si, R.L. Wang, Y. Xuan, B.T. Liu and X.X. Xi,” Dielectric properties of SrTiO3 thin films grown on various perovskite electrodes by pulsed laser deposition”, Mater. Sci. Eng. B. 56, 218 (2002).
101. J.S. Koehler, ”Attempt to design a strong solid” Phys. Rev. B. 2, 547 (1970).
102. H. Tabata, H. Tanaka and T. Kawai, ”Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties”, Appl. Phys. Lett. 65, 1970 (1994).
103. J. Kim, Y. Kim, Y.S. Kim, J. Lee, L. Kim and D. Jung,” Large nonlinear dielectric properties of artificialBaTiO3/SrTiO3 superlattices”, Appl. Phys. Lett. 80, 3581 (2002).
104. L. Kim, D. Jung, J. Kim, Y.S. Kim and J. Lee, ” Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity”, Appl. Phys. Lett. 82, 2118 (2003).
105. Z. Wang, T.Y. asuda, S. Hatatani and S. Oda,” E,nhanced dielectric properties in SrTiO3/BaTiO3 strained superlattice structures prepared by atomic-layer metalorganic chemical vapor deposition”, Jpn. J. Appl. Phys. 38, 6817 (1999).
106. Z. Wang and S. Oda,” Electrical properties of SrTiO3/BaTiO3 strained superlattice films prepared by atomic layer metallorganic chemical vapor deposition”, J. Electrochem. Society. 147, 4615 (2000).
107. S. Bose and S.B. Krupanidhia,” Improved ferroelectric and leakage properties in symmetric BiFeO3/SrTiO3 superlattice”, Appl. Phys. Lett. 90, 212902 (2007).
108. R. Ranjith, W. Prellier, J.W. Cheah, J. Wang and T. Wu,” dc leakage behavior and conduction mechanism in (BiFeO(3))(m)(SrTiO(3))(m) superlattices”, Appl. Phys. Lett. 92, 232905 (2008).
109. R. Ranjith, U. Lüders, W. Prellier, , A.Da. Costa, I. Dupont and R. Desfeux,” Probing of local ferroelectricity in BiFeO3 thin filmsand (BiFeO3)m(SrTiO3)m superlattices ”, J. Magn. Magn. Mater. 321, 1710 (2009).
110. R. Ranjith, R.V.K. Mangalam, Ph. Boullay, A. David, M.B. Lepetit, U. Lüders, W. Prellier, A.Da Costa, A. Ferri, R. Desfeux, Gy. Vincze, Zs. Radi and C. Aruta,” Constrained ferroelectric domain orientation in (BiFeO3)m(SrTiO3)n superlattice”, Appl. Phys. Lett. 96, 022902 (2010).
111. J.E. Sundgren, B.O. Johansson and S.E. Karlsson,” Kinetics of nitride formation on titanium targets during reactive sputtering”, Surf. Sci. 128, 265 (1983).
112. J.C. Jiang, X.Q. Pan, W. Tian, C.D. Theis and D.G. Schlom,” Abrupt PbTiO3/SrTiO3 superlattices grown by reactive molecular beam epitaxy”, Appl. Phys. Lett. 74, 2851 (1999).
113. M. Lippmaa, N. Nakagawa, M. Kawasaki, S. Ohashi and H. Koinuma,” Growth mode mapping of SrTiO3 epitaxy”, Appl. Phys. Lett. 76, 2439 (2000).
114. B. Somenath and S.B. Krupanidhi, “Improved ferroelectric and leakage properties in symmetric BiFeO3/SrTiO3 superlattice”, Appl. Phys. Lett. 90, 212902 (2007).
115. S.K. Sinha, E.B. Sirota, S. Garoff and H.B. Stanley,” X-ray and neutron scattering from rough surface”, Phys. Rev. B 38, 2297(1988).
116. M. Alvisi, A. Rizzo, L. Tapfer and L. Vasanelli,” X-ray reflectivity analysis of thin TiN and TiOxNy films deposited by dual-ion-beam sputtering on (100)Si substrates”, Thin Solid Films 298, 130 (1997).
117. T.V.C. Rao and M.K. Sanyal,” The effect of growth defects on the X-ray reflectivity of multilayer systems”, Appl. Suf. Sci. 74, 315 (1994).
118. S. Logothetidis, G. Stergioudis and P. Patsalas,” Oxidation and structural changes in fcc TiNx thin films studied with X-ray reflectivity”, Surf. Coat. Technol. 100, 295 (1998).
119. J.D. Shindler and R.M. Suter,” Moderate resolution x‐ray reflectivity”, Rev. Sci. Instrum. 63, 5343 (1992).
120. L.G. Parratt,”Surface studies of solid by total reflection of X-rays”, Phys. Rev. 95, 359. (1954).
121. D.K. Bowen and B.K. Tanner,” Characterization of engineering surfaces by grazing-incidence X-ray reflectivity”, Nanotechnology 4, 175. (1993).
122. H. Naganuma, Y. Inoue and S. Okamura,” Estimation of leakage current density and remanent polarization of BiFeO3 films with low resistivity by positive, up, negative, and down measurements”, Jpn. J. Appl. Phys 47, 5558 (2008).
123. J. Wu and J. Wang,” BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si(100) substrates”, Acta Materialia 58, 1688 (2010).
124. J.S. Cross, S.H. Kim, S. Wada and A. Chatterjee,” Characterization of Bi and Fe co-doped PZT capacitors for FeRAM”, Sci. Technol. Adv. Mater. 11, 044402 (2010).
125. S.M. Feng, Y.S. Chai, J.L. Zhu, N. Manivannan, Y.S. Oh, L.J. Wang, Y.S. Yang, C. Q. Jin and K.H. Kim,” Determination of the intrinsic ferroelectric polarization in orthorhombic HoMnO3”, New J. Phys. 12, 073006 (2010).
126. A.R. Chaudhuri and S.B. Krupanidhi,” Investigation of true remnant polarization response in heterostructured artificial biferroics”, Solid State Commun. 150, 660 (2010).
127. E.H. Hall,” On a New Action of the Magnetic on Electric Currents”, Am. J. Math. 2(3), 287 (2011).
128. H.Y. Lee and T.B. Wu,” Structural characterization of sputter-deposited LaNiO3 thin films on Si substrate by x-ray reflectivity and diffraction”, J. Mater, Res. 12 (11), 3165 (1997).
129. M. Sugawara, M. Kondo, S. Yamazaki and K. Nakajima,” Exact determination of superlattice structures by smallangle xray diffraction method”, Appl. Phys. Lett. 52, 742 (1988).
130. J.E. Mahan, Physical Vapor Deposition of Thin films, 269 (New York USA: Wiley) (2000).
131. H.Y. Lee, T.W. Huang, C.H. Lee and Y.W. Hsieh,” Surface morphology of sputtered Ta2O5 thin films on Si substrates from X-ray reflectivity at a fixed angle”, J. Appl. Cryst. 41, 356 (2008).
132. F. Giesen, B. Damaschke, V. Moshnyaga and K. Samwer, Phys. Rev. B 69, 014421 (2004).
133. Y. Luo, M. Moske and K. Samwer,”Interlayer coupling and magnetoresistance in Ir/Co multilayers”, Europhys. Lett. 42, 565 (1998).
134. Y. Lu, J. Klein, C. Ho¨fener, B. Wiedenhorst, J.B. Philipp, F. Herbstritt, A. Marx, L. Alff and R. Gross, ”Magnetoresistance of coherently strained La2/3Ba1/3MnO3/SrTiO3 superlattices”, Phys. Rev. B 62, 15806 (2000).
135. Y.C. Liang, T.B. Wu, H.Y. Lee and Y.W. Hsieh,” Structural characteristics of epitaxial BaTiO3/LaNiO3 superlattice”, J. Appl. Phys. 96, 584 (2004).
136. U. Pietsch, H. Metzger, S. Rugel, B. Jenichen and I. K. Robinson,“ Depth‐resolved measurement of lattice relaxation in Ga1−xInxAs/GaAs strained layer superlattices by means of grazing‐incidence x‐ray diffraction“, J. Appl. Phys. 74, 2381 (1993).
137. E.D. Specht, H.M. Christen, D.P. Norton and Boatner,” X-ray diffraction measurement of the effect of layer thickness on the ferroelectric transition in epitaxial KTaO3/KNbO3 multilayers”, Phys. Rev. Lett. 80, 4317 (1998).
138. H.H. Lee, M.S. Yi, H.W. Jang, Y.T. Moon, S.J. Park, D.Y. Noh, M. Tang and K.S. Liang,” Determination of absolute indium content in InGaN/GaN multiple quantum wells using anomalous x-ray scattering”, Appl. Phys. Lett. 81, 5120 (2002).
139. D. Fuchs, M. Adam, P. Schweiss and R. Schneider,“ Dielectric tunability of coherently strained LaAlO3/SrTiO3 superlattices “, J. Appl. Phys. 91, 5288B (2002).
140. B. Mikolajczyk, M. Bedzyk, J. Klug, and J. C. Lin, “X-ray Characterization of a multiferroic bismuth ferrite thin film”, Nanoscape 5, 94 (2008).
141. M. Ghita and M. Fornari,”Interplay between A-site and B-site driven instabilities in perovskites”, Phys. Rev. B 72, 054114 (2005).
142. C. Ederer and N.A. Spaldin,”Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics”, Phys. Rev. Lett. 95, 257601 (2005).
143. Y. C. Liang, H. Y. Lee, H. J. Liu, K. F. Wu, T. B. Wu and C. H. Lee,” Evaluation of strain-dependent dielectric properties in BaTiO3/LaNiO3 and (Ba,Sr) TiO3/LaNiO3 artificial superlattice films on LaNiO3-coated SrTiO3 substrates ”, J. Electrochem. Soc. 152 (9), F129 (2005).
144. A.J. Moulson and J.M. Herbert, Electroceramics Materials: Properties, Applications.
145. J.F. Scott, C.A. Araujo, B.M. Melnick, L.D. McMillan and R. Zuleeg,” Quantitative measurement of space‐charge effects in lead zirconate‐titanate memories”, J. Appl. Phys. 70, 382 (1991).
146. R. Plumlee, Sandia Laboratories Report No. SC-RR-67-730 (1967).
147. H.J. Liu, C.W. Liang, W.I. Liang, H.J. Chen, J.C. Yang, C.Y. Peng, G.F. Wang, F.N. Chu, Y.C. Chen, H.Y. Lee, L. Chang, S.J. Lin and Y.H. Chu,” Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and x-ray diffraction”, Phys. Rev. B. 85, 014104 (2012).
148. D. Kan and Y. Shimakawa,” Strain Effect on Structural Transition in SrRuO3 Epitaxial Thin Films”, Cryst. Growth Des. 11, 5483 (2011).
149. I. Boerasu, L. Pintilie, M. Pereira, M.I. Vasilevskiy and M. J. M. Gomes,” Simple model of polarization offset of graded ferroelectric structures”, J. Appl. Phys. 93, (2003) 4776.
150. J.F. Scott,”Ferroelectrics go bananas”, J. Phys. Condens. Matter. 20, 021001 (2008).