簡易檢索 / 詳目顯示

研究生: 邱心怡
Chiu, Hsin-Yi
論文名稱: ZnO Nanosturctures:synthesis, characterization and applications
氧化鋅奈米結構之製備,特性分析及其應用發展
指導教授: 嚴大任
Yen, Ta-Jen
金重勳
Chin, Tsung-Shune
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 96
中文關鍵詞: 氧化鋅奈米結構奈米粒子奈米線奈米柱
外文關鍵詞: ZnO, nanostuctures, nanoparticles, nanowires, nanorods
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Zero-dimensional and one-dimensional ZnO nanostructures were fabricated in this research. ZnO nanoparticles synthesized at different temperatures (55 °C, 58 °C and 62 °C) result in different particle size (11 nm, 22 nm and 36 nm for samples synthesized at 55 °C, 58 °C and 62 °C, respectively) and perform different emission colors under UV excitation. According to the particle size analysis, PL spectra and UV-Visible spectra, larger size ZnO nanoparticles have emission and absorbance wavelengths toward red shifted. Time course PL spectra of ZnO nanoparticles demonstrates the stability of ZnO nanoparticles in ethanol solution is only 9 days after synthesized. Capping a PEG polymer outside ZnO nanoparticle core not only makes ZnO nanoparticles dissolved in water, but also successfully stabilized its PL property to further 22 days. Several sets of growing parameters for growing ZnO nanowires by VLS process demonstrated the growing conditions in our furnace system. The factors that would affect the morphology of as-grown ZnO nanowires were studied. Synthesis of ZnO nanorods by aqueous chemical growth method was successfully achieved. The solubility test result of ZnO nanorods demonstrated in this research is diverse from the one which was reported in a published paper.
    The purpose of this thesis is to synthesize, characterize and study the potential applications of ZnO nanostructures.


    Chatper 1 Introduction 1 1-1 Introduction1 1 1-2 Motivation 2 Chatper 2 Literatures Review 4 2-1 Nanoscience and Nanotechnology 4 2-2 Nanostructures 5 2-2-1 Approaches to Fabricate Nanomaterials 6 2-2-2 Self-assembly 7 2-3 Properties of Nanostructures 9 2-3-1 Quantum Confinement 9 2-3-2 Optical Properties 10 2-3-3 Surface Effect 12 2-4 Zinc Oxide (ZnO) 13 2-4-1 Crystal and Surface Structure of ZnO1 14 2-4-2 Typical Growth Structures of ZnO1 16 2-5 Properties of ZnO Nanostructures 17 2-5-1 Field Emission Properties 18 2-5-2 Luminescence Properties 19 2-6 ZnO Nanoparticles 22 2-7 ZnO Nanowires and Nanorods 23 2-7-1 Vapor-Liquid-Solid Growth Mechanism 24 2-7-2 Aqueous Chemical Growth Mechanism 27 Chatper 3 Experimental Procedures 29 3-1 Synthesis of ZnO Nanoparticles 29 3-1-1 Synthesis of ZnO Nanoparticles 29 3-1-2 Removing Solvent by Freeze Dryer Machine 29 3-1-3 Synthesis of ZnO-PEG Nanoparticles 30 3-2 Growth of ZnO Nanowires by Furnace System 30 3-2-1 E-gun Deposition of Au Catalyst 30 3-2-2 Growth of ZnO Nanowires 31 3-3 Fabrication of ZnO Nanorods by Aqueous Chemical Method 32 3-3-1 Preparation of Substrate 32 3-3-2 Fabrication of ZnO Nanorods 33 3-4 Photoluminescence (PL) Analysis 33 3-5 UV-Visible Absorption Spectrum Analysis 34 3-6 Fourier Transform Infrared (FTIR) Spectroscopy Analysis 34 3-7 Particle Size Analysis 35 3-8 Scanning Electron Microscopy (SEM) Observation 36 3-9 Transmission Electron Microscopy (TEM) Observation 37 3-10 X-Ray Diffractometry (XRD) Analysis 37 3-11 Cytotoxicity test --- MTT Assay 38 3-12 ICP Analysis 39 Chatper 4 Results and Discussion 40 4-1 Photoluminescence ZnO Nanoparticles 40 4-1-1 Size Dependence 40 4-1-2 Photoluminescence Mechanism of ZnO Nanoparticles 45 4-1-3 Stability of ZnO Nanoparticles in Ethanol Solution 47 4-1-4 Evaluation of Biological Application 50 4-2 ZnO Nanoparticles Capped with PEG Polymer 54 4-2-1 Core-Shell Structure 55 4-2-2 Optical Properties 58 4-2-3 Potential Applications 62 4-3 ZnO Nanowires fabricated by Vapor-Liquid-Solid (VLS) Process 70 4-4 ZnO Nanorods synthesized by Aqueous Chemical Method 80 4-5 Potential applications of one-dimensional ZnO nanostructures 86 Chatper 5 Conclusions 88 Chatper 6 References 90

    1. Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
    2. Z. L. Wang, Mater. Today 7, 26 (2004).
    3. Nanoscience and nanotechnologies: opportunities and uncertainties, ISBN 0-85403-604-0 (2004).
    4. Nanosystems: Molecular Machinery, Manufacturing, and Computation, ISBN 0-471-57518-6 (2006).
    5. Nanomaterials, ISBN 978-3-527-31531-4 (2008).
    6. G. M. Whitesides and B. Grzybowski, Science 295, 2418 (2002).
    7. Nanoco Technologies Ltd. (2007).
    8. E. V. Giessen, E. M. Blokhuis, and D. J. Bukman, J. Chem. Phys. 108, 1148 (1998).
    9. Materials Science and Metallurgy, ISBN 0835942872 (1998).
    10. C. R. Berry, Phys. Rev. 88, 596 (1952)
    11. P. A. Montano et al., Phys. Rev. B 30 672 (1984)
    12. H. Hofmeister, S. Thiel, M. Dubiel, and E. Schurig, Appl. Phys. Lett. 70, 1694 (1997)
    13. R. Lamber, S. Wetjen, and N. I. Jaeger, Phys. Rev. B 51, 10968 (1995).
    14. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Science 256, 1425 (1992).
    15. W. Thomson (Kelvin), Philos. Mag. 42, 448 (1871).
    16. K. K. Nanda, F. E. Kruis, and H. Fissan, Phys. Rev. Lett. 89, 256103 (2002).
    17. K. K. Nanda, A. Maisels, F. E. Kruis, H. Fissan, and S. Stappert, Phys. Rev. Lett. 91, 106102 (2003).
    18. Z. L. Wang and J. Song, Science 312, 242 (2006).
    19. X. Wang, J. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007).
    20. J. H. He, C. L. Hsin, J. Liu, L. J. Chan, and Z. L. Wang, Adv. Mater. 19, 781 (2007).
    21. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
    22. J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, Adv. Mater. 15, 1911 (2003).
    23. X. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum, Z. L. Wang, and C. J. Summers, Adv. Mater. 17, 2103 (2005).
    24. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2005).
    25. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater. 4, 455 (2005).
    26. O. Dulub, L. A. Boatner, and U. Diebold, Surf. Sci. 519, 201 (2002).
    27. B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
    28. P. W. Tasker, Phys. C: Solid State Phys. 12, 4977 (1979).
    29. O. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
    30. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
    31. V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. Gil Girol, U. Burghaus, and Ch. Woll, Phys. Rev. Lett. 90, 106102 (2003).
    32. Y. Ding, X. Y. Kong, and Z. L. Wang, Phys. Rev. B 70, 235408 (2004).
    33. Z. Fan and J. G. Lu, J. Nanosci Nanotechnol. 5, 1561 (2005).
    34. X. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, J. Phys. Chem. B 108, 8773 (2004).
    35. L.M. Kukreja, S. Barik, and P. Misra, J. Crystal Growth 263, 531 (2004).
    36. J. W. Chiou, K. P. Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, F. Z. Chien, M.-H. Tsai, I.-H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 85, 3220 (2004).
    37. Z. Fan and J. G. Lu, Appl. Phys. Lett. 86, 123510 (2005).
    38. R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Y. K. Tseng, and S. C. Kung, Appl. Phys. Lett. 87, 13110 (2005).
    39. Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, Appl. Phys. Lett. 86, 203115 (2005).
    40. Y. B. Yi, Y. Bando, and D. Golberg, Appl. Phys. Lett. 84, 3603 (2004).
    41. Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, Adv. Funct. Mater. 13, 811 (2003).
    42. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 81, 3648 (2002).
    43. Q. Wan, K. Yu, T. H. Wang, and C. L. Lin, Appl. Phys. Lett. 83, 2253 (2003).
    44. Q. H. Li, Q. Wan, Y. J. Chen, T. H. Wang, H. B. Jia, and D. P. Yu, Appl. Phys. Lett. 85, 636 (2004).
    45. D. Bera, L. Qian, S. Sabui, S. Santra, and P. H. Holloway, Opt. Mater. 30, 1233 (2008).
    46. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, A. Deepthy, and B. Krishnan, J. Appl. Phys. 98, 041301 (2005).
    47. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    48. W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li, and J. Xu, Nucl. Instrum. Methods Phys. Res. B 169, 59 (2000).
    49. V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 85, 5971 (2004).
    50. D. Haranath, S. Sahai, and P. Joshi, Appl. Phys. Lett. 92, 233113 (2008).
    51. K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).
    52. L. Yang, J. Yang, X. Liu, Y. Zhang, Y. Wang, H. Fan, D. Wang, and J. Lang, J. Alloys Compd. 463, 92 (2008).
    53. M. K. Patra, M. Manoth, V. K. Singh, G. S. Gowd, V. S. Choudhry, S. R. Vadera, and N. Kumar, J. Lumin. 129, 320 (2009).
    54. D. W. Bahnemann, C. Kormann, M. R. Hoffmann, J. Phys, Chem. 91, 3789 (1987).
    55. L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, and G. K. L. Wong, Appl. Phys. Lett. 76, 2901 (2000).
    56. E. A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998).
    57. E. M. Wong, J. E. Bonevich, and P. C. Searson, J. Phys. Chem. B 102, 7770 (1998).
    58. S. Sakohara, M. Ishida, and M. A. Anderson, J. Phys. Chem, B 102, 10169 (1998).
    59. H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk, and A. Hoffmann, Appl. Phys. Lett. 80, 210 (2002).
    60. E. M. Wong and P. C. Searson, Appl. Phys. Lett. 74, 2939 (1999).
    61. A. Germeau, A. L. Roest, D. Vanmaekelbergh, G. Allan, C. Delerue, and E. A. Meulenkamp, Phys. Rev. Lett. 90, 097401 (2003).
    62. W. Z. Ostwald, Phys. Chem. 37, 385 (1901).
    63. D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, J. Am, Chem. Soc. 124, 5782 (2002).
    64. C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. Shen, J. Appl. Phys. 90, 4489 (2001).
    65. H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lu, B. Yang, and M. Gao, Adv. Mater. 15, 777 (2003).
    66. Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Xeng, Nanotechnology 18, 215604 (2007).
    67. C. Li and N. Murase, Langmuir 20, 1 (2004).
    68. D. Vollath, D. V. Szabo, and S. Schlabach, J. Nanopart. Res. 6, 181 (2004).
    69. X. Wang, J. Song, C. J. Summers, J. H. Ryou, P. Li, R. D. Dupuis, and Z. L. Wang, J. Phys. Chem, B 110, 7720 (2006).
    70. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).
    71. Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto and D. R. M. Walton, J. Mater. Chem. 8, 1859 (1998).
    72. Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou and G. Wang, J. Mater. Res. 16, 683 (2001).
    73. L. Skuja, J. Non-Cryst. Solids. 239, 16 (1998).
    74. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, Adv. Mater. 12, 746 (2000).
    75. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
    76. A. M. Morales and C. M. Lieber, Science 279, 208 (1998).
    77. J. Westwater, D. P. Gosain, S. Tomiya and S. Usui, J. Vac. Sci. Technol. B 15, 554 (1997).
    78. Y.Y. Wu and P.D. Yang, J. Am, Chem. Soc. 123, 3165 (2001).
    79. J. Song, X. Wang, E. Riedo, and Z. L. Wang, J. Phys. Chem, B 109,9869 (2005).
    80. L. Vayssieres, Adv. Mater. 15, 464-466 (2003).
    81. L. Vayssieres, Inter. J. Nanotechnology 1, 1-41 (2004).
    82. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2004).
    83. Y. C. Chang, and L. J. Chen, J. Phys. Chem. C 111, 1268-1272 (2007).
    84. H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, J. Am, Chem. Soc. 130, 7522 (2008).
    85. B. Guo, Z.R. Qiu, and K.S. Wang, Appl. Phys. Lett. 82, 2290 (2003).
    86. K. Vanheusden, C.H. Seager, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Vogit, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    87. S.A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).
    88. C. Klingshirn, M. Grundmann, A. Hoffmann, B. Meyer, and A. Wagg, Phys. J. 5, 33 (2006).
    89. C. Kingshrin, Chem. Phys. Chem. 8, 782 (2007).
    90. P. S. Xu et al., Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003).
    91. J. A. Byers, Table values from Phenomenex catalog (2003).
    92. H. M. Xiong, D. P. Liu, Y. Y. Xia, and J. S. Chen, Chem. Mater. 17, 3062 (2005).
    93. A. P. Alivisatos, Science 271, 933 (1996).
    94. X. Peng, U. Manna, W. Yang, J. Wickham, E. Scher, A. Dadavanich, and A. P. Alicisatos, Nature 404, 59 (2000).
    95. H. Zhang, D. Wang, B. Yang, and H. Möhwald, J. Am. Chem. Soc. 128, 10171 (2006).
    96. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, Biomaterials 28, 4717 (2003).
    97. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, Biomaterial 28, 4717 (2007).
    98. J. Zhou, N. Xu, and Z. L. Wang, Adv. Mater. 18, 2432 (2006).
    99. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater. 12, 323-331 (2002).
    100. C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee,
    Adv. Mater. 15, 838 (2003).
    101. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang,
    Science 305,1269 (2004).
    102. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).
    103. Z. Fan, P. Chang, E. C. Walter, C. Lin, H. P. Lee, R. M. Penner, and J. G. Lu, Appl.
    Phys. Lett. 85, 6128 (2004).
    104. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, and S. J. Pearton,
    Appl. Phys. Lett. 85, 2002 (2004).
    105. K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M.-Y. Sung, S. Kim, Appl.
    Phys. Lett. 84, 4376 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE