研究生: |
邱心怡 Chiu, Hsin-Yi |
---|---|
論文名稱: |
ZnO Nanosturctures:synthesis, characterization and applications 氧化鋅奈米結構之製備,特性分析及其應用發展 |
指導教授: |
嚴大任
Yen, Ta-Jen 金重勳 Chin, Tsung-Shune |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | 氧化鋅 、奈米結構 、奈米粒子 、奈米線 、奈米柱 |
外文關鍵詞: | ZnO, nanostuctures, nanoparticles, nanowires, nanorods |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Zero-dimensional and one-dimensional ZnO nanostructures were fabricated in this research. ZnO nanoparticles synthesized at different temperatures (55 °C, 58 °C and 62 °C) result in different particle size (11 nm, 22 nm and 36 nm for samples synthesized at 55 °C, 58 °C and 62 °C, respectively) and perform different emission colors under UV excitation. According to the particle size analysis, PL spectra and UV-Visible spectra, larger size ZnO nanoparticles have emission and absorbance wavelengths toward red shifted. Time course PL spectra of ZnO nanoparticles demonstrates the stability of ZnO nanoparticles in ethanol solution is only 9 days after synthesized. Capping a PEG polymer outside ZnO nanoparticle core not only makes ZnO nanoparticles dissolved in water, but also successfully stabilized its PL property to further 22 days. Several sets of growing parameters for growing ZnO nanowires by VLS process demonstrated the growing conditions in our furnace system. The factors that would affect the morphology of as-grown ZnO nanowires were studied. Synthesis of ZnO nanorods by aqueous chemical growth method was successfully achieved. The solubility test result of ZnO nanorods demonstrated in this research is diverse from the one which was reported in a published paper.
The purpose of this thesis is to synthesize, characterize and study the potential applications of ZnO nanostructures.
1. Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
2. Z. L. Wang, Mater. Today 7, 26 (2004).
3. Nanoscience and nanotechnologies: opportunities and uncertainties, ISBN 0-85403-604-0 (2004).
4. Nanosystems: Molecular Machinery, Manufacturing, and Computation, ISBN 0-471-57518-6 (2006).
5. Nanomaterials, ISBN 978-3-527-31531-4 (2008).
6. G. M. Whitesides and B. Grzybowski, Science 295, 2418 (2002).
7. Nanoco Technologies Ltd. (2007).
8. E. V. Giessen, E. M. Blokhuis, and D. J. Bukman, J. Chem. Phys. 108, 1148 (1998).
9. Materials Science and Metallurgy, ISBN 0835942872 (1998).
10. C. R. Berry, Phys. Rev. 88, 596 (1952)
11. P. A. Montano et al., Phys. Rev. B 30 672 (1984)
12. H. Hofmeister, S. Thiel, M. Dubiel, and E. Schurig, Appl. Phys. Lett. 70, 1694 (1997)
13. R. Lamber, S. Wetjen, and N. I. Jaeger, Phys. Rev. B 51, 10968 (1995).
14. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Science 256, 1425 (1992).
15. W. Thomson (Kelvin), Philos. Mag. 42, 448 (1871).
16. K. K. Nanda, F. E. Kruis, and H. Fissan, Phys. Rev. Lett. 89, 256103 (2002).
17. K. K. Nanda, A. Maisels, F. E. Kruis, H. Fissan, and S. Stappert, Phys. Rev. Lett. 91, 106102 (2003).
18. Z. L. Wang and J. Song, Science 312, 242 (2006).
19. X. Wang, J. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007).
20. J. H. He, C. L. Hsin, J. Liu, L. J. Chan, and Z. L. Wang, Adv. Mater. 19, 781 (2007).
21. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
22. J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, Adv. Mater. 15, 1911 (2003).
23. X. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum, Z. L. Wang, and C. J. Summers, Adv. Mater. 17, 2103 (2005).
24. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2005).
25. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater. 4, 455 (2005).
26. O. Dulub, L. A. Boatner, and U. Diebold, Surf. Sci. 519, 201 (2002).
27. B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
28. P. W. Tasker, Phys. C: Solid State Phys. 12, 4977 (1979).
29. O. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
30. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
31. V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. Gil Girol, U. Burghaus, and Ch. Woll, Phys. Rev. Lett. 90, 106102 (2003).
32. Y. Ding, X. Y. Kong, and Z. L. Wang, Phys. Rev. B 70, 235408 (2004).
33. Z. Fan and J. G. Lu, J. Nanosci Nanotechnol. 5, 1561 (2005).
34. X. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, J. Phys. Chem. B 108, 8773 (2004).
35. L.M. Kukreja, S. Barik, and P. Misra, J. Crystal Growth 263, 531 (2004).
36. J. W. Chiou, K. P. Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, F. Z. Chien, M.-H. Tsai, I.-H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 85, 3220 (2004).
37. Z. Fan and J. G. Lu, Appl. Phys. Lett. 86, 123510 (2005).
38. R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Y. K. Tseng, and S. C. Kung, Appl. Phys. Lett. 87, 13110 (2005).
39. Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, Appl. Phys. Lett. 86, 203115 (2005).
40. Y. B. Yi, Y. Bando, and D. Golberg, Appl. Phys. Lett. 84, 3603 (2004).
41. Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, Adv. Funct. Mater. 13, 811 (2003).
42. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 81, 3648 (2002).
43. Q. Wan, K. Yu, T. H. Wang, and C. L. Lin, Appl. Phys. Lett. 83, 2253 (2003).
44. Q. H. Li, Q. Wan, Y. J. Chen, T. H. Wang, H. B. Jia, and D. P. Yu, Appl. Phys. Lett. 85, 636 (2004).
45. D. Bera, L. Qian, S. Sabui, S. Santra, and P. H. Holloway, Opt. Mater. 30, 1233 (2008).
46. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, A. Deepthy, and B. Krishnan, J. Appl. Phys. 98, 041301 (2005).
47. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
48. W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li, and J. Xu, Nucl. Instrum. Methods Phys. Res. B 169, 59 (2000).
49. V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 85, 5971 (2004).
50. D. Haranath, S. Sahai, and P. Joshi, Appl. Phys. Lett. 92, 233113 (2008).
51. K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).
52. L. Yang, J. Yang, X. Liu, Y. Zhang, Y. Wang, H. Fan, D. Wang, and J. Lang, J. Alloys Compd. 463, 92 (2008).
53. M. K. Patra, M. Manoth, V. K. Singh, G. S. Gowd, V. S. Choudhry, S. R. Vadera, and N. Kumar, J. Lumin. 129, 320 (2009).
54. D. W. Bahnemann, C. Kormann, M. R. Hoffmann, J. Phys, Chem. 91, 3789 (1987).
55. L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, and G. K. L. Wong, Appl. Phys. Lett. 76, 2901 (2000).
56. E. A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998).
57. E. M. Wong, J. E. Bonevich, and P. C. Searson, J. Phys. Chem. B 102, 7770 (1998).
58. S. Sakohara, M. Ishida, and M. A. Anderson, J. Phys. Chem, B 102, 10169 (1998).
59. H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk, and A. Hoffmann, Appl. Phys. Lett. 80, 210 (2002).
60. E. M. Wong and P. C. Searson, Appl. Phys. Lett. 74, 2939 (1999).
61. A. Germeau, A. L. Roest, D. Vanmaekelbergh, G. Allan, C. Delerue, and E. A. Meulenkamp, Phys. Rev. Lett. 90, 097401 (2003).
62. W. Z. Ostwald, Phys. Chem. 37, 385 (1901).
63. D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, J. Am, Chem. Soc. 124, 5782 (2002).
64. C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. Shen, J. Appl. Phys. 90, 4489 (2001).
65. H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lu, B. Yang, and M. Gao, Adv. Mater. 15, 777 (2003).
66. Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Xeng, Nanotechnology 18, 215604 (2007).
67. C. Li and N. Murase, Langmuir 20, 1 (2004).
68. D. Vollath, D. V. Szabo, and S. Schlabach, J. Nanopart. Res. 6, 181 (2004).
69. X. Wang, J. Song, C. J. Summers, J. H. Ryou, P. Li, R. D. Dupuis, and Z. L. Wang, J. Phys. Chem, B 110, 7720 (2006).
70. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).
71. Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto and D. R. M. Walton, J. Mater. Chem. 8, 1859 (1998).
72. Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou and G. Wang, J. Mater. Res. 16, 683 (2001).
73. L. Skuja, J. Non-Cryst. Solids. 239, 16 (1998).
74. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, Adv. Mater. 12, 746 (2000).
75. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
76. A. M. Morales and C. M. Lieber, Science 279, 208 (1998).
77. J. Westwater, D. P. Gosain, S. Tomiya and S. Usui, J. Vac. Sci. Technol. B 15, 554 (1997).
78. Y.Y. Wu and P.D. Yang, J. Am, Chem. Soc. 123, 3165 (2001).
79. J. Song, X. Wang, E. Riedo, and Z. L. Wang, J. Phys. Chem, B 109,9869 (2005).
80. L. Vayssieres, Adv. Mater. 15, 464-466 (2003).
81. L. Vayssieres, Inter. J. Nanotechnology 1, 1-41 (2004).
82. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2004).
83. Y. C. Chang, and L. J. Chen, J. Phys. Chem. C 111, 1268-1272 (2007).
84. H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, J. Am, Chem. Soc. 130, 7522 (2008).
85. B. Guo, Z.R. Qiu, and K.S. Wang, Appl. Phys. Lett. 82, 2290 (2003).
86. K. Vanheusden, C.H. Seager, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Vogit, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).
87. S.A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).
88. C. Klingshirn, M. Grundmann, A. Hoffmann, B. Meyer, and A. Wagg, Phys. J. 5, 33 (2006).
89. C. Kingshrin, Chem. Phys. Chem. 8, 782 (2007).
90. P. S. Xu et al., Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003).
91. J. A. Byers, Table values from Phenomenex catalog (2003).
92. H. M. Xiong, D. P. Liu, Y. Y. Xia, and J. S. Chen, Chem. Mater. 17, 3062 (2005).
93. A. P. Alivisatos, Science 271, 933 (1996).
94. X. Peng, U. Manna, W. Yang, J. Wickham, E. Scher, A. Dadavanich, and A. P. Alicisatos, Nature 404, 59 (2000).
95. H. Zhang, D. Wang, B. Yang, and H. Möhwald, J. Am. Chem. Soc. 128, 10171 (2006).
96. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, Biomaterials 28, 4717 (2003).
97. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, Biomaterial 28, 4717 (2007).
98. J. Zhou, N. Xu, and Z. L. Wang, Adv. Mater. 18, 2432 (2006).
99. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater. 12, 323-331 (2002).
100. C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee,
Adv. Mater. 15, 838 (2003).
101. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang,
Science 305,1269 (2004).
102. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).
103. Z. Fan, P. Chang, E. C. Walter, C. Lin, H. P. Lee, R. M. Penner, and J. G. Lu, Appl.
Phys. Lett. 85, 6128 (2004).
104. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, and S. J. Pearton,
Appl. Phys. Lett. 85, 2002 (2004).
105. K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M.-Y. Sung, S. Kim, Appl.
Phys. Lett. 84, 4376 (2004).