研究生: |
田世齊 Shih-Chi Tien |
---|---|
論文名稱: |
研究人類肝癌衍生生長因子之HATH區域的蛋白質骨架動態在單體和雙體間之異同 Probing the Protein Backbone Dynamics of the HATH Domain of Human Hepatoma-Derived Growth Factor in Monomer and Dimer |
指導教授: |
黃太煌
Tai-Huang Huang 呂平江 Ping-Chiang Lyu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 蛋白質 、核磁共振 |
外文關鍵詞: | NMR, HATH domain, protein, monomer, dimer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類肝癌衍生生長因子(hHDGF)是屬於一個新發現的蛋白質家族,命名為人類肝癌衍生生長因子相關蛋白質家族(HDGF-related protein),簡稱為HRP蛋白質家族。目前此蛋白質家族已知包含六個蛋白質,其功能目前包括:血管、腎臟新生、腫瘤生長、細胞增生和活化核酸轉錄等。所有HRP蛋白質家族的蛋白質在N端的序列上有很高的相似度(homologous to the amino terminal of HDGF),此段序列簡稱為HATH domain。但這六個蛋白質在C端序列有很大的差異性。人類肝癌衍生生長因子是一含有240個胺基酸的蛋白質,可分做兩部份:第一段是從N端的前100個胺基酸序列,有完整結構稱之HATH domain;第二段是從胺基酸序列101至240,其結構還未知。
人類肝癌衍生生長因子的HATH domain會與細胞膜外的肝素(heparin)產生鍵結,會讓外生性的人類肝癌衍生生長因子更容易進入細胞。而C端可能可以幫助蛋白質由細胞質進入細胞核中,讓此因子在細胞核中發生細胞增生或活化的反應。之前的實驗發現,HATH domain的單體間,會相互分享部分的結構,而形成雙體(dimer)此一特別的雙體,稱為domain-swapped dimer。這個特殊的雙體相較於單體,跟肝素有更高鍵結力。
我的論文題目主要是在利用核磁共振去研究人類肝癌衍生生長因子的HATH domain的單體及雙體在分子動態上的差異性。我們利用異核核磁共振脈衝序列,在14.7 Tesla的靜磁場下,量測遲緩速率(relaxation rate)和15N-H異核交互作用增異參數(NOE)。並使用無模型法則(Model-free formulism)去決定分子動態參數:次序參數(S2)、有效相關時間(τe)、化學交換參數(Rex);另外利用進一步的簡化光譜密度(reduced spectral density mapping)的對應得到了光譜密度函數去分析比較單體及雙體在分子動態的差異性。
Human hepatoma-derived growth factor (hHDGF) is a member of HRPs (HDGF-related proteins) family of proteins. HRPs belong to a new protein family that has been known in nephrogenesis, tumorigenesis, vascular development, cell proliferation and transcriptional activation. All the HRPs have the conserved N-terminal homologous to the amino terminal of HDGF (HATH) domain, but vary in the C-terminal domain. hHDGF is a 240-amino acid protein, which can be divided into two parts: the first is the well-structured HATH domain, from residues 1-100 and the structure has been determined by NMR; the second is the C-terminal domain, from residues 101-240 , which is disorder.
HATH domain has been shown to bind to heparin and heparin sulfate located outside the surface of cell membrane and facilitated internalization of the protein into cell. The C-terminal domain may help translocate the protein from cytoplasm to nucleus, and serve as a signal to stimulate cell growth. Previous studies showed that HATH domain monomer shares a portion of structure with each other to form the particular dimer called the domain-swapped dimer. Dimer has much higher heparin-binding affinity to heparin than that of the monomer.
My thesis work is aimed at determining the difference in dynamics by NMR relaxation method between monomer and the homo-dimer of the HATH domain. 15N spin relaxation rates and heteronuclear NOE determined at 600 MHz field were analyzed by Modelfree approach to extract the dynamic parameter: S2 (order parameter), τe (effective correlation time) and Rex (chemical exchange rate). I also use Reduced Spectral Density Mapping to determine the spectral density functions: J(ω0.87H), J(0) and J(ωN). The results showed that the domain swapped semi-dimer packs similar in spatial and orientation compares to the monomer by order parameters and spectral density function, J(0.87H). Besides fast local fluctuation loop motions act similar in both monomer and dimer, there were much more micro- to millisecond motions in monomer. Both in monomer and dimer, the L2 loop region acts more complicated dynamic motions with fitting to effective correlation times and exchange rates. We demonstrated the dynamic similarity and differences in monomer and dimer of HATH domain in wide-ranged time scale by using NMR relaxation experiments.
1. Nakamura, H.; Izumoto, Y.; Kambe, H.; Kuroda, T.; Mori, T.; Kawamura, K.; Yamamoto, H.; Kishimoto, T., Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 1994, 269, (40), 25143-9.
2. Izumoto, Y.; Kuroda, T.; Harada, H.; Kishimoto, T.; Nakamura, H., Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 1997, 238, (1), 26-32.
3. Ikegame, K.; Yamamoto, M.; Kishima, Y.; Enomoto, H.; Yoshida, K.; Suemura, M.; Kishimoto, T.; Nakamura, H., A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun 1999, 266, (1), 81-7.
4. Dietz, F.; Franken, S.; Yoshida, K.; Nakamura, H.; Kappler, J.; Gieselmann, V., The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 2002, 366, (Pt 2), 491-500.
5. Ge, H.; Si, Y.; Roeder, R. G., Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. Embo J 1998, 17, (22), 6723-9.
6. Sue, S. C.; Chen, J. Y.; Lee, S. C.; Wu, W. G.; Huang, T. H., Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol 2004, 343, (5), 1365-77.
7. Abouzied, M. M.; Baader, S. L.; Dietz, F.; Kappler, J.; Gieselmann, V.; Franken, S., Expression patterns and different subcellular localization of the growth factors HDGF (hepatoma-derived growth factor) and HRP-3 (HDGF-related protein-3) suggest functions in addition to their mitogenic activity. Biochem J 2004, 378, (Pt 1), 169-76.
8. Shinohara, T.; Singh, D. P.; Fatma, N., LEDGF, a survival factor, activates stress-related genes. Prog Retin Eye Res 2002, 21, (3), 341-58.
9. Everett, A. D.; Lobe, D. R.; Matsumura, M. E.; Nakamura, H.; McNamara, C. A., Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest 2000, 105, (5), 567-75.
10. Oliver, J. A.; Al-Awqati, Q., An endothelial growth factor involved in rat renal development. J Clin Invest 1998, 102, (6), 1208-19.
11. Enomoto, H.; Yoshida, K.; Kishima, Y.; Kinoshita, T.; Yamamoto, M.; Everett, A. D.; Miyajima, A.; Nakamura, H., Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 2002, 36, (6), 1519-27.
12. Everett, A. D.; Narron, J. V.; Stoops, T.; Nakamura, H.; Tucker, A., Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. Am J Physiol Lung Cell Mol Physiol 2004, 286, (6), L1194-201.
13. Mori, M.; Morishita, H.; Nakamura, H.; Matsuoka, H.; Yoshida, K.; Kishima, Y.; Zhou, Z.; Kida, H.; Funakoshi, T.; Goya, S.; Yoshida, M.; Kumagai, T.; Tachibana, I.; Yamamoto, Y.; Kawase, I.; Hayashi, S., Hepatoma-derived growth factor is involved in lung remodeling by stimulating epithelial growth. Am J Respir Cell Mol Biol 2004, 30, (4), 459-69.
14. Everett, A. D.; Bushweller, J., Hepatoma derived growth factor is a nuclear targeted mitogen. Curr Drug Targets 2003, 4, (5), 367-71.
15. El-Rifai, W.; Frierson, H. F., Jr.; Harper, J. C.; Powell, S. M.; Knuutila, S., Expression profiling of gastric adenocarcinoma using cDNA array. Int J Cancer 2001, 92, (6), 832-8.
16. Hu, T. H.; Huang, C. C.; Liu, L. F.; Lin, P. R.; Liu, S. Y.; Chang, H. W.; Changchien, C. S.; Lee, C. M.; Chuang, J. H.; Tai, M. H., Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 2003, 98, (7), 1444-56.
17. Yoshida, K.; Nakamura, H.; Okuda, Y.; Enomoto, H.; Kishima, Y.; Uyama, H.; Ito, H.; Hirasawa, T.; Inagaki, S.; Kawase, I., Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol 2003, 18, (11), 1293-301.
18. Yoshida, K.; Tomita, Y.; Okuda, Y.; Yamamoto, S.; Enomoto, H.; Uyama, H.; Ito, H.; Hoshida, Y.; Aozasa, K.; Nagano, H.; Sakon, M.; Kawase, I.; Monden, M.; Nakamura, H., Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Ann Surg Oncol 2006, 13, (2), 159-67.
19. Everett, A. D.; Stoops, T.; McNamara, C. A., Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem 2001, 276, (40), 37564-8.
20. Kishima, Y.; Yamamoto, H.; Izumoto, Y.; Yoshida, K.; Enomoto, H.; Yamamoto, M.; Kuroda, T.; Ito, H.; Yoshizaki, K.; Nakamura, H., Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 2002, 277, (12), 10315-22.
21. Schlessinger, J.; Plotnikov, A. N.; Ibrahimi, O. A.; Eliseenkova, A. V.; Yeh, B. K.; Yayon, A.; Linhardt, R. J.; Mohammadi, M., Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 2000, 6, (3), 743-50.
22. Abouzied, M. M.; El-Tahir, H. M.; Prenner, L.; Haberlein, H.; Gieselmann, V.; Franken, S., Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem 2005, 280, (12), 10945-54.
23. Hawker, J. R., Jr.; Granger, H. J., Internalized basic fibroblast growth factor translocates to nuclei of venular endothelial cells. Am J Physiol 1992, 262, (5 Pt 2), H1525-37.
24. Zhan, X.; Hu, X.; Friesel, R.; Maciag, T., Long term growth factor exposure and differential tyrosine phosphorylation are required for DNA synthesis in BALB/c 3T3 cells. J Biol Chem 1993, 268, (13), 9611-20.
25. Prudovsky, I.; Savion, N.; Zhan, X.; Friesel, R.; Xu, J.; Hou, J.; McKeehan, W. L.; Maciag, T., Intact and functional fibroblast growth factor (FGF) receptor-1 trafficks near the nucleus in response to FGF-1. J Biol Chem 1994, 269, (50), 31720-4.
26. Slater, L. M.; Allen, M. D.; Bycroft, M., Structural variation in PWWP domains. J Mol Biol 2003, 330, (3), 571-6.
27. Stec, I.; Nagl, S. B.; van Ommen, G. J.; den Dunnen, J. T., The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 2000, 473, (1), 1-5.
28. Nameki, N.; Tochio, N.; Koshiba, S.; Inoue, M.; Yabuki, T.; Aoki, M.; Seki, E.; Matsuda, T.; Fujikura, Y.; Saito, M.; Ikari, M.; Watanabe, M.; Terada, T.; Shirouzu, M.; Yoshida, M.; Hirota, H.; Tanaka, A.; Hayashizaki, Y.; Guntert, P.; Kigawa, T.; Yokoyama, S., Solution structure of the PWWP domain of the hepatoma-derived growth factor family. Protein Sci 2005, 14, (3), 756-64.
29. Lukasik, S. M.; Cierpicki, T.; Borloz, M.; Grembecka, J.; Everett, A.; Bushweller, J. H., High resolution structure of the HDGF PWWP domain: a potential DNA binding domain. Protein Sci 2006, 15, (2), 314-23.
30. Akke, M., NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Curr Opin Struct Biol 2002, 12, (5), 642-7.
31. Palmer, A. G., 3rd; Kroenke, C. D.; Loria, J. P., Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 2001, 339, 204-38.
32. Palmer, A. G., 3rd, NMR characterization of the dynamics of biomacromolecules. Chem Rev 2004, 104, (8), 3623-40.
33. Keeler, J., Understanding NMR spectroscopy. 2002.
34. Palmer, A. G. I. C., D. A., Molecular dynamics analysis of NMR relaxation in a Zinc-finger peptide. Journal of the American Chemical Society 1992, 114, 9059-9067.
35. Levitt, M. H., Spin dynamics (basics of nuclear magnetic resonance). Wiley: 2005.
36. Cavanagh, J., Wayne, J. F., Palmer, A. G. III, & Skelton, M. J., Protein NMR spectroscopy principles and practice. 1996.
37. Evan, J. N. S., Biomolecular NMR Spectroscopy. 1995.
38. University, T. N. c. f. a. Q. s., Advanced NMR course for the Web. In; www.chem.queensu.ca/FACILITIES/ NMR/nmr/webcourse/index1.htm.
39. Abragam, A., Principles of Nuclear Magnetism. Clarendon Press: Oxford, 1961.
40. Lipari, G. S., A., Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 1. Theory and Range of Validity. Journal of the American Chemical Society 1982, 104, 4546-4559.
41. Lipari, G. S., A., Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 2. Analysis of Experimental Results. Journal of the American Chemical Society 1982, 104, 4559-4570.
42. Clore, G. M., Szab, A., Bax, A., Kay, L. E.,Driscoll, P. C. & Gronenborn, A. M., Deviation from the simple two-parameter model-free approach ti the interpertation of nitrogen-13 nuclear magnetic relaxation of proteins. Journal of the American Chemical Society 1990, 112, 4989-4991.
43. Woessner, D. E., Journal of Chemical Physics 1962, 37, 647-654.
44. Mandel, A. M., Akke, M. Palmer, A. G. III, Backbone dynamics of E. Coli ribonuclease HI: correlaions with structure and function in an active enzyme. Journal of Molecular Biology 1995, 246, 144-163.
45. PENG, J.; THANABAL, V.; WAGNER, G., 2D HETERONUCLEAR NMR MEASUREMENTS OF SPIN-LATTICE RELAXATION-TIMES IN THE ROTATING FRAME OF X NUCLEI IN HETERONUCLEAR HX SPIN SYSTEMS. J MAGN RESON 1991, 94, (1), 82-100.
46. Palmer, A. G., Modelfree manual. In NY, 1998.
47. Palmer, A. G. I., Rance, M. & Wright, P. E., Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear NMT spectroscopy. Journal of the American Chemical Society 1991, 113, 4371-4380.
48. Peng, J. W., Wagner, G., Mapping of the spectral densities of nitrogen-hydrogen bond motions in Eglin c using heteronuclear relaxation experiments. Biochemistry 1992, 31, 8571.
49. Dayie, K. T., Wagner, G. & Lefever, L. F., Theory and paractice of nuclear spin relaxation in proteins. Annu. Rev. Phys. Chem. 1996, 47, 243-282.
50. Farrow, N. A., Zhang, O., Szabo, A., Torchia, D. A.,& Kay L. E., Spectral density function mapping using 15N relaxation data exculsively. Journal of Biomolecular NMR 1995, 6, 153-162.
51. Atkinson, R. A., Kieffer, B., The role of protein motions in molecular recognition: insight from heteronuclear NMR relaxation measurements. Progress in Nuclear Magnetic Resonance Spectroscopy 2004, 44, 141-187.
52. Bai, Y., Protein folding pathways studied by pulsed- and native-state hydrogen exchange. Chem Rev 2006, 106, (5), 1757-68.
53. Linderstrom-Lang, K., The pH-dependence of the deuterium exchange of insulin. Biochim Biophys Acta 1955, 18, (2), 308.
54. Hvidt, A.; Linderstrom-Lang, K., The kinetics of the deuterium exchange of insulin with D2O; an amendment. Biochim Biophys Acta 1955, 16, (1), 168-9.
55. Hvidt, A.; Nielsen, S. O., Hydrogen exchange in proteins. Adv Protein Chem 1966, 21, 287-386.
56. Barbato, G., Ikura, M., Kay L., Pastor, R. & Bax, A., Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 1992, 31, 5260-5278.
57. Kay, L. E., Nicholson, L., Delaglio, F., Bax, A. &Torchia, D., Pulse sequences for remical of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of neteronuclea T1 and T2 values in proteins. Journal of Magnetic Resonance 1992, 97, 359-375.
58. Wishart, D. S. S., B. D., Chemical shifts as a tool for structural determination. Methods of Enzymology 1994, 239, 363-392.
59. Wishart, D. S., Bigam, C. G., Yao, J., Abildgaard, F., Dyson, H. J. & Oldfield, E. et al, 1H, 13C, 15N chemical shift referencing in biomolecular NMR. Journal of Biomolecular NMR 1995, 6, 135-140.
60. Piotto, M., Saudek, V. & Sklenar, V., Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. Journal of Biomolecular NMR 1992, 2, 661-665.
61. Sklenar, V., Piotto, M., Leppik, R. & Saudek, V., Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. Journal of Magnetic Resonance 1993, 102A, 241-245.
62. Markley, J. L., Horsley, W. J. & Klein, M. P., Spin-lattice relaxation measurements in slowly relaxation complex spectra. Journal of Chemical Physics 1971, 55, 3604-3605.
63. Neidig, K. P., Geyer, M., Goerler, A., Antz, C., Saffrich, R., Beneicke, W. & Kalbitzer, H. R., AURELIA, a program for computer-aided analysis of multidimentional NMR spectra. Journal of Biomolecular NMR 1995, 6, 255-270.
64. Brueschweiler, R., Liao, X. & Wright, P. E., Long-range motional restrictions in a multidomain zinc-finger protein anisotropic tumbling. Science 1995, 268, 886-889.
65. Lee, L. K., Rance, M., Chazin, W. J. &Palmer, A. G. III, Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C nuclaer spin relaxation. Journal of Biomolecular NMR 1997, 9, 287-298.
66. Kay, L. E.; Torchia, D. A.; Bax, A., Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 1989, 28, (23), 8972-9.
67. Kroenke, C. D., Rance, M. & Palmer, A. G. III, Variability of the 15N chemical shift anisotropy in E. Coli ribonuclease HI in solution. Journal of the American Chemical Society 1999, 121.
68. Bai, Y.; Milne, J. S.; Mayne, L.; Englander, S. W., Primary structure effects on peptide group hydrogen exchange. Proteins 1993, 17, (1), 75-86.
69. Connelly, G. P.; Bai, Y.; Jeng, M. F.; Englander, S. W., Isotope effects in peptide group hydrogen exchange. Proteins 1993, 17, (1), 87-92.
70. Koradi, R.; Billeter, M.; Wuthrich, K., MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 1996, 14, (1), 51-5, 29-32.