簡易檢索 / 詳目顯示

研究生: 徐世金
SYU, SHIH-JIN
論文名稱: 人型輪式倒單擺機器人之防打滑移動平衡控制
Anti-slip Balancing Control of Humanoid Wheeled Inverted Pendulum Robot
指導教授: 葉廷仁
Yeh, Ting-Jen
口試委員: 劉承賢
Liu, Cheng-Hsien
顏炳郎
Yen, Ping-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 輪式倒單擺載具積分控制插值控制器防滑控制姿態估測
外文關鍵詞: wheeled-inverted-pendulum vehicle, control with integral action, interpolating controller, anti-slip control, attitude estimation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對倒單擺系統,提出創新的姿態估測與控制方法,使人型輪式倒單擺機器人在縱向移動上具防打滑與一定的追跡能力。在姿態估測上,藉由重力向量恆定的特性以估測姿態,配合訊號融合技術與運動分析,達成此估測器的收斂性與性能。在控制器設計上,由分析倒單擺載具的動態,推導線性矩陣不等式(LMI),一證明引入積分的防滑插值控制器的收斂性與設計方法,再以卡爾曼濾波器估測打滑狀況以獲得插值控制的插值指標,二證明無插值之強健線性控制器之收斂性與設計方法。最後以模擬與實作人型倒單擺機器人驗證理論的可行性。


    This research investigates robust balancing and tracking control issues associated with a humanoid wheeled-inverted-pendulum(WIP) robot. Particularly, a method to estimate the attitude of WIP vehicle and an anti-slip interpolating controller with integral action are proposed. In the attitude estimating method, dynamics and the sensor fusion technique are applied to realize the gravity estimator. The convergence rate of the estimator is also studied. In the controller design, the dynamics of the typical WIP vehicle is analyzed and is further applied with an integral control. A set of linear matrix inequalities (LMI’s) is derived to prove the controller convergence rate. Finally, simulations are conducted and a humanoid WIP robot is constructed to validate the performance of the estimation method and the control system.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 1. 第一章 緒論 1 1.1. 研究動機與目的 1 1.2. 文獻回顧 4 1.3. 論文簡介 8 2. 第二章 系統分析 10 2.1. 運動學定義與定理 10 2.1.1. 座標與向量定義 10 2.1.2. 倒單擺機器人模型定義 12 2.1.3. 三維運動學定理 13 2.1.3.1. 三維運動學方程式 13 2.1.3.2. 座標系統的轉換 15 2.2. 姿態量測分析 16 2.2.1. 倒單擺系統量測加速度分析 17 2.2.2. 重力估測器設計:IMU訊號融合 19 2.2.3. 重力估測器穩定性證明 21 2.3. 倒單擺機器人動態系統推導 23 2.3.1. Lagrange動力學定義 23 2.3.2. 控制模型推導 25 3. 第三章 防滑追跡控制器設計 27 3.1. 打滑辨識 27 3.2. 縱向防滑插值控制器 28 3.2.1. 追跡控制與系統積分擴階 29 3.2.2. 打滑系統方程式 30 3.2.3. 適應性插值回授控制設計 32 3.3. 牽引力估測 33 3.3.1. 干擾估測器 33 3.3.2. 卡爾曼濾波器估測滑差比 34 3.4. 替代滑差比之防滑控制器 36 4. 第四章 模擬結果 38 4.1. 姿態估測模擬 38 4.2. 機器人防滑控制模擬 40 5. 第五章 實作結果 46 5.1. 硬體介紹 46 5.1.1. 倒單擺機器人外觀 46 5.1.2. 內部電子設備 47 5.2. 重力估測器實作 49 5.3. 三相馬達驅動 51 5.3.1. 馬達簡化控制模型 51 5.3.2. 弦波近似:SPWM 52 5.3.3. 電流控制結果 53 5.4. 倒單擺機器人控制實作 54 5.4.1. 控制架構 54 5.4.2. 平衡控制 55 5.4.3. 防滑控制 57 6. 第六章 結論與未來規劃 62 6.1. 結論 62 6.2. 未來規劃 63 7. 附錄 64 7.1. 倒單擺載具系統矩陣 64 7.2. 機構幾何改變對IMU量測之校正 66 7.2.1. 角度偏差補償 66 7.2.2. 角速度偏差補償 69 7.2.3. 加速度偏差補償 70 8. 參考資料 72

    [1] Honda Robotics, Retrieved August 7, 2019, https://global.honda/innovation/robotics/ASIMO.html
    [2] Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998, May). The development of Honda humanoid robot. In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146) (Vol. 2, pp. 1321-1326). IEEE.
    [3] Boston Dynamics, Retrieved August 7, 2019, https://www.bostondynamics.com/atlas
    [4] SoftBank Pepper robot, Retrieved August 7, 2019, https://www.softbankrobotics.com/emea/en/pepper
    [5] Segway x2 SE Patroller , Retrieved August 7, 2019, http://www.segway.com/products/public-safety/segway-x2-se-patroller
    [6] 日立EMIEW 2:我是機器人,不是鋼鐵人, Retrieved August 7, 2019, https://chinese.engadget.com/2010/06/23/hitachi-debuts-emiew-2-robot/
    [7] Y.-S. Ha et al., “Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot,” Robotics and autonomous systems, vol. 17, no. 1-2, pp. 65–80, 1996.
    [8] Grasser, F., D'arrigo, A., Colombi, S., & Rufer, A. C. (2002). JOE: a mobile, inverted pendulum. IEEE Transactions on industrial electronics, 49(1), 107-114.
    [9] Salerno, A., & Angeles, J. (2004, April). The control of semi-autonomous two-wheeled robots undergoing large payload-variations. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 2, pp. 1740-1745). IEEE.
    [10] Pathak, K., Franch, J., & Agrawal, S. K. (2005). Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on robotics, 21(3), 505-513.
    [11] Karkoub, M. A., & Parent, M. (2004). Modelling and non-linear feedback stabilization of a two-wheel vehicle. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 218(8), 675-686.
    [12] Jeong, S., & Takahashi, T. (2007, October). Wheeled inverted pendulum type assistant robot: inverted mobile, standing, and sitting motions. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1932-1937). IEEE.
    [13] Miao, S., & Cao, Q. (2011). Modeling of self-tilt-up motion for a two-wheeled inverted pendulum. Industrial Robot: An International Journal, 38(1), 76-85.
    [14] Miao, S., & Cao, Q. (2011). Modeling of self-tilt-up motion for a two-wheeled inverted pendulum. Industrial Robot: An International Journal, 38(1), 76-85.
    [15] Nguyen, H. G., Morrell, J., Mullens, K. D., Burmeister, A. B., Miles, S., Farrington, N., ... & Gage, D. W. (2004, December). Segway robotic mobility platform. In Mobile Robots XVII (Vol. 5609, pp. 207-220). International Society for Optics and Photonics.
    [16] Hamzah, N., Aripin, M. K., Sam, Y. M., Selamat, H., & Ghazali, R. (2012, March). Second order sliding mode controller for longitudinal wheel slip control. In 2012 IEEE 8th International Colloquium on Signal Processing and its Applications (pp. 138-143). IEEE.
    [17] Ohishi, K., Ogawa, Y., Miyashita, I., & Yasukawa, S. (2000, October). Anti-slip re-adhesion control of electric motor coach based on force control using disturbance observer. In Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No. 00CH37129) (Vol. 2, pp. 1001-1007). IEEE.
    [18] Ryu, J. C., & Agrawal, S. K. (2011). Differential flatness-based robust control of mobile robots in the presence of slip. The International Journal of Robotics Research, 30(4), 463-475.
    [19] Yi, J., Song, D., Zhang, J., & Goodwin, Z. (2007, April). Adaptive trajectory tracking control of skid-steered mobile robots. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 2605-2610). IEEE.
    [20] Chan, R. P. M., Stol, K. A., & Halkyard, C. R. (2012, October). Effect of limiting wheel slip on two-wheeled robots in low traction environments. In International Conference on Intelligent Robotics and Applications (pp. 417-426). Springer, Berlin, Heidelberg.
    [21] Jones, D. R., & Stol, K. A. (2010, December). Modelling and stability control of two-wheeled robots in low-traction environments. In Australasian Conference on Robotics and Automation, Brisbane, Australia.
    [22] Alarfaj, M., & Kantor, G. (2010, December). Centrifugal force compensation of a two-wheeled balancing robot. In 2010 11th International Conference on Control Automation Robotics & Vision (pp. 2333-2338). IEEE.
    [23] Kim, S., Seo, J., & Kwon, S. (2011, October). Development of a two-wheeled mobile tilting & balancing (MTB) robot. In 2011 11th International Conference on Control, Automation and Systems (pp. 1-6). IEEE.
    [24] Introducing Handle , Retrieved August 7, 2019, https://www.youtube.com/watch?v=-7xvqQeoA8c
    [25] Klemm, V., Morra, A., Salzmann, C., Tschopp, F., Bodie, K., Gulich, L., ... & Weber,(2019) F. Ascento: A Two-Wheeled Jumping Robot, Retrieved August 7, 2019, https://www.youtube.com/watch?v=U8bIsUPX1ZU
    [26] Huang, C. F., & Yeh, T. J. (2019). Anti Slip Balancing Control for Wheeled Inverted Pendulum Vehicles. IEEE Transactions on Control Systems Technology.
    [27] Hatakeyama, N., & Shimada, A. (2008). Movement control using zero dynamics of two-wheeled inverted pendulum robot. Transactions of the Society of Instrument and Control Engineers, 44(3), 252-259.
    [28] Huang, C. F., Dai, B. H., & Yeh, T. J. (2016, July). Observer-based sensor fusion for power-assist electric bicycles. In 2016 American Control Conference (ACC) (pp. 5486-5491). IEEE.
    [29] Hibbeler, R. C., & Fan, S. C. (2002). Engineering Mechanics: Dynamics. Prentice Hall.
    [30] Advanced Engineering Systems in Motion: Dynamics of Three Dimensional (3D) Motion . https://www.coursera.org/learn/motion-and-kinetics?
    [31] Flannery, M. R. (2005). The enigma of nonholonomic constraints. American Journal of Physics, 73(3), 265-272.
    [32] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1), 35-45.
    [33] Chiasson, J. (2005). Modeling and high performance control of electric machines (Vol. 26). John Wiley & Sons.
    [34] Huang, C. F., & Yeh, T. J. (2019). Anti Slip Balancing Control for Wheeled Inverted Pendulum Vehicles. IEEE Transactions on Control Systems Technology.
    [35] Holmes, D. G. (1996). The significance of zero space vector placement for carrier-based PWM schemes. IEEE Transactions on Industry Applications, 32(5), 1122-1129.
    [36] AS5311 High Resolution Magnetic Linear Encoder datasheet, Retrieved August 7, 2019, https://ams.com/documents/20143/36005/AS5311_DS000200_2-00.pdf/575d252f-096b-e5ab-5d8f-d504fd005062

    QR CODE