簡易檢索 / 詳目顯示

研究生: 陳銘毅
Chen, Ming-Yi
論文名稱: 具多重孔洞MFI沸石材料之合成與催化應用研究
Synthesis and Catalytic Studies of Hierarchical MFI Zeolite Materials
指導教授: 楊家銘
Yang, Chia-Min
口試委員: 黃暄益
林昇佃
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 沸石材料催化應用
外文關鍵詞: Zeolite Materials, Catalytic Studies
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用自行設計合成之新型結構導向試劑及不同類型前驅物的選擇下,合成具多層次孔洞含鋁MFI沸石ZSM-5,並以表面官能化的方式負載鈀金屬作為觸媒,應用於苯酚選擇性氫化反應。在結構導向試劑的設計上,結合了兩側具結構導引能力的四級銨親水端,以及丙氧基鏈疏水部分;並研究水熱條件合成系統中,前驅物的選擇對沸石形貌、結構及孔洞性質的影響。在選用TEOS為矽源、Al(OsBu)3為鋁源的合成條件下,可得到具有花瓣狀的silicalite-1或層板堆疊的ZSM-5;而以水玻璃為矽源,硫酸鋁為鋁源的之合成條件,所得的沸石材料顆粒大小均一性提升,並具自我支撐垂直交錯之結構,且可將鋁充分的引入沸石結構中形成四配位鋁。我們便利用這些ZSM-5材料作為載體,將其表面修飾烯基以和Pd(II)錯合,再經還原後得到高分散性的鈀奈米顆粒。最後我們發現由較佳質傳效能、表面疏水化的多層次孔洞ZSM-5負載鈀奈米顆粒的複合材料,相較傳統的商用Pd/C觸媒,在常壓水相的苯酚選擇性氫化反應具有較佳的催化活性,以及環己酮的選擇性。


    In this study, hierarchical zeolite ZSM-5 materials were hydrothermally synthe-sized by using a novel tri-block structure directing agent (SDA) and different silicon sources and were further functionalized then loaded with palladium for the catalytic selective phenol hydrogenation. The tri-block SDA contains repeated propylene oxide units with both ends connented to three quaternary ammonium groups. The effects of the kinetic parameter of the synthesis on the morphology and lamellar structure of the resulting ZSM-5 and MFI zeolites were investigated by tuning the precursors with different silicon and aluminum sources. In the TEOS-Al(OsBu)3 synthesis system, lamellar stacking and flower-like morphology was formed. On the other hand, highly uniform self-pillared structure containing almost exclusively tetrahedrally coordinated framework aluminum was obtained in the water glass-aluminum sulfate synthesis system. For the deposition of Pd nanoparticles, the Pd(II) ions were coordinated with vinyl groups on zeolite surface and highly dispersed Pd nanoparticles were form after reduction. The Pd@ZSM-5 catalyst exhibited higher phenol conversion and cyclo-hexanone selectivity under room temperature and atmospheric pressure than reference catalysts including commercial Pd/C and conventional ZSM-5-supported catalyst did. The superior catalytic activity in mainly attributed to shorter diffusion path length, hydrophobic surface and small and highly dispersed Pd nanoparticles.

    目錄 第1章 緒論 1 1-1沸石 1 1-1-1沸石簡介、結構和分類 1 1-1-2沸石在觸媒上的應用 5 1-1-3 MFI沸石與其合成 7 1-2 多層次孔洞沸石 11 1-2-1 多層次孔洞沸石之重要性 11 1-2-2 多層次孔洞沸石的製備方法比較 11 1-2-2-1 後合成法 12 1-2-2-2 模板法 14 1-3 沸石材料在液相催化的應用 21 1-3-1 沸石材料表面負載貴金屬 21 1-3-2 苯酚的選擇性氫化反應 25 1-4 研究動機 29 第2章 實驗部分 30 2-1 實驗藥品 30 2-2 結構導向試劑之合成 32 2-2-1 具四級銨分子之合成 33 2-2-2 胺基高分子雙甲基化及結合四級銨 33 2-3 沸石材料的製備 34 2-3-1 合成Silicalite-1 34 2-3-1-1 使用TEOS為矽源 34 2-3-1-2 使用矽酸鈉為矽源 35 2-3-2 合成ZSM-5 35 2-3-2-1 使用TEOS為矽源 35 2-3-2-2 使用矽酸鈉為矽源 36 2-3-3 沸石合成態移除模板 37 2-3-4 表面嫁接有機烯類官能基 37 2-3-5 表面官能化的沸石負載鈀金屬 37 2-3-6 表面未官能化的沸石負載鈀金屬 38 2-3-7 樣品命名 39 2-4 苯酚的選擇性氫化反應 40 2-5 鑑定分析與方法 41 2-5-1 X光粉末繞射(Powder X-Ray Diffractometer, PXRD) 41 2-6-2 熱重分析(Thermo Gravimetric Analyzer, TGA) 42 2-6-3 氮氣物理吸脫附法(N2 Physisorption) 43 2-6-4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 47 2-6-5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 47 2-6-6 核磁共振光譜(NMR Spectrometer) 48 2-6-7 固態核磁共振光譜(Solid-State NMR Spectrometer) 49 2-6-8 傅立葉紅外線轉換光譜(FTIR spectrometer) 50 2-6-9 感應耦合電漿質譜分析(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 50 2-6-10 氣相層析(Gas chromatography, GC) 51 第3章 結果與討論 52 3-1 結構導向試劑的鑑定分析 52 3-2 合成多層次孔洞MFI沸石 56 3-2-1 Silicalite-1合成之探討 56 3-2-2 合成之ZSM-5之探討 62 3-3 改善ZSM-5合成系統的探討 67 3-3-1 更改鋁源對ZSM-5合成的影響 67 3-3-2 使用矽酸鈉合成MFI沸石 73 3-3-4 使用矽酸鈉合成ZSM-5 78 3-4 MFI沸石表面的官能化並負載鈀金屬 86 3-4-1 表面嫁接TVS官能基 86 3-4-2 鈀奈米顆粒的負載 88 3-5 苯酚的選擇性氫化反應 91 3-5-1 對照組樣品的製備和鑑定 91 3-5-1-1 表面未官能化的沸石附載鈀金屬 91 3-5-1-2 使用傳統ZSM-5為載體 93 3-5-2 苯酚的選擇性氫化反應結果 95 第4章 結論 100 第5章 參考文獻 101

    [1] Ciesla, U.; Schüth, F. Microporous and Mesoporous Materials 1999, 27, 131-
    149.
    [2] A.F.Cronstedt, som kallsa Zeolites 1756.
    [3] Ch. Baerlocher, L. B. M. a. D. H. O., Atlas of Zeolite Framework Types, 6th
    revised edition, 2007.
    [4] Davis, M. E., R. F. Lobo, Chemistry of Materials 1992, 4, 756-768.
    [5] W. B. Yelon, D. X., J. M. Newsam, J. Dunn, Zeolites 1990, 553-558.
    [6] Barrer, R. M., Journal of the Chemical Society 1948, 2158.
    [7] Flanigen, E. M.; Bennett, J. M.; Grose, R. W.; Cohen, J. P.; Patton, R. L.;
    Kirchner, R. M.; Smith, J. V. Nature 1978, 271, 512-516.
    [8] Landolt, R. J. A. a. G. R., US3702886 1972.
    [9] Barrer, R. M., Hydrothermal Chemistry of Zeolites, Academic Press, 1982.
    [10] Corma, A. Chemical Reviews 1997, 97, 2373-2420.
    [11] Corma, A. Journal of Catalysis 2003, 216, 298-312.
    [12] Flanigen, E. M.; Patton, R.; Wilson, S. Studies in Surface Science and Catalysis,
    P.J. Grobet, W. J. M. E. F. V.; Schulz-Ekloff, G., Eds. Elsevier 1988, 37, 13-27.
    [13] Stephen T. Wilson, B. M. L., Celeste A. Messina, Thomas R. Cannan, and Edith
    M. Flanigen, J. Am. Chem. SOC. 1982, 104, 1146-1 147.
    [14] M. Taramazso, G. P. a. B. N., US Patent, Vol. 4 1983, 410-501.
    [15] Barrer, R. M., Zeolites and Clay Minerals as Sorbents and Molecular Sieves
    1978.
    [16] Zhao, X. S.; Lu, G. Q.; Millar, G. J. Industrial & Engineering Chemistry
    Research 1996, 35, 2075-2090.
    [17] Morris, R. E. Journal of Materials Chemistry 2005, 15, 931-938.
    [18] McCusker, L. B.; Liebau, F.; Engelhardt, G. Pure Appl. Chem. 2001, 73, 381.
    [19] Jensen, W. B., The Lewis Acid-base Concepts: An Overview 1980.
    [20] Lohse, U.; Parlitz, B.; Patzelova, V. Journal of Physical Chemistry 1989, 93,
    3677-3683.
    [21] Weitkamp, J., Zeolites and catalysis 2000.
    [22] Introduction to Zeolite Science and Practice, Elsevier, U.S.A.
    [23] Naber, J. E.; de Jong, K. P.; Stork, W. H. J.; Kuipers, H. P. C. E.; Post, M. F. M.,
    Studies in Surface Science and Catalysis, J. Weitkamp, H. G. K. H. P.;
    Hölderich, W., Eds. Elsevier 1994, 84, 2197-2219.
    [24] van Bekkum, H.; Kouwenhoven, H. W. Recueil des Travaux Chimiques des
    Pays-Bas 1989, 108, 283-294.
    [25] Hölderich, W.; Hesse, M.; Näumann, F. Angewandte Chemie International Edition in English 1988, 27, 226-246.
    [26] Rahimi, N.; Karimzadeh, R. Applied Catalysis A: General 2011, 398, 1-17.
    [27] Ali, M. A.; Tatsumi, T.; Masuda, T. Applied Catalysis A: General 2002, 233, 77-
    90.
    [28] Weitkamp, J. Industrial & Engineering Chemistry Product Research and
    Development 1982, 21, 550-558.
    [29] Tsai, W.-T., Journal of Loss Prevention in Process Industries 2002, 15, 147-157.
    [30] Sano, T.; Kiyozumi, Y.; Kawamura, M.; Mizukami, F.; Takaya, H.; Mouri, T.;
    Inaoka, W.; Toida, Y.; Watanabe, M.; Toyoda, K. Zeolites 1991, 11, 842-845.
    [31] Clarizia, G.; Algieri, C.; Regina, A.; Drioli, E. Microporous and Mesoporous
    Materials 2008, 115, 67-74.
    [32] Mitchell, S.; Pérez-Ramírez, J. Catalysis Today 2011, 168, 28-37.
    [33] Huber, S.; Calzaferri, G. Angewandte Chemie International Edition 2004, 43,
    6738-6742.
    [34] Lorkovic, I.; Noy, M.; Weiss, M.; Sherman, J.; McFarland, E.; Stucky, G. D.;
    Ford, P. C. Chemical Communications 2004, 566-567.
    [35] Wang, X.; Rinaldi, R. Angewandte Chemie International Edition 2013, 52,
    11499-11503.
    [36] Xu, L.; Li, C.-g.; Zhang, K.; Wu, P. ACS Catalysis 2014, 4, 2959-2968.
    [37] Zabeti, M.; Nguyen, T. S.; Lefferts, L.; Heeres, H. J.; Seshan, K. Bioresource
    Technology 2012, 118, 374-381.
    [38] Yan, J. Y.; Kung, H. H.; Sachtler, W. M. H.; Kung, M. C. Journal of Catalysis
    1998, 175, 294-301.
    [39] D. H. Olson, G. T. K., S. L. Lawton, W. M. Meler, Journal of Physical
    Chemistry 1981, 85, 2238-2243.
    [40] H. van Koningsveld, H. v. B., J. C. Jansen, Acta Crystallographica Section B
    1987, 43, 127-132.
    [41] Olson, D. H.; Haag, W. O.; Lago, R. M. Journal of Catalysis 1980, 61, 390-396.
    [42] Hay, D. G.; Jaeger, H.; West, G. W. The Journal of Physical Chemistry 1985, 89,
    1070-1072.
    [43] Čejka, J. i., H. v. Bekkum, Zeolites and ordered mesoporous materials: progress
    and prospects : the 1st FEZA School on Zeolites 2005.
    [44] S. M. Auerbach, K. A. C., P. K. Dutta, Handbook of Zeolite Science and
    Technology 2003.
    [45] K.Byrappa, M. Y., Hydrothermal Synthesis and Growth of Zeolites 2013.
    [46] Cundy, C. S.; Cox, P. A. Microporous and Mesoporous Materials 2005, 82, 1-78.
    [47] Persson, A. E.; Schoeman, B. J.; Sterte, J.; Otterstedt, J. E. Zeolites 1994, 14,
    557-567.
    [48] Mintova, S.; Reinelt, M.; Metzger, T. H.; Senker, J.; Bein, T. Chemical
    Communications 2003, 326-327.
    [49] Louis, D. R., American Chemical Society 1979, 173, 387-395.
    [50] Breck, D. W., Zeolite Molecular Sieves, Wilely 1974.
    [51] van Donk, S.; Bitter, J. H.; Verberckmoes, A.; Versluijs-Helder, M.; Broersma,
    A.; de Jong, K. P. Angewandte Chemie International Edition 2005, 44, 1360-
    1363.
    [52] Perez-Ramirez, J.; Christensen, C. H.; Egeblad, K.; Christensen, C. H.; Groen, J.
    C. Chemical Society Reviews 2008, 37, 2530-2542.
    [53] Corma, A.; Diaz-Cabanas, M. J.; Jorda, J. L.; Rey, F.; Sastre, G.; Strohmaier, K.
    G. Journal of the American Chemical Society 2008, 130, 16482-16483.
    [54] Corma, A.; Diaz-Cabanas, M. J.; Martinez-Triguero, J.; Rey, F.; Rius, J. Nature
    2002, 418, 514.
    [55] Bazan, J. F.; Schall, T. J., Interleukin-16 or not? Nature 1996, 381, 29-30.
    [56] Huang, L. R.; Cox, E. C.; Austin, R. H.; Sturm, J. Science 2004, 304, 987-990.
    [57] Strohmaier, K. G.; Vaughan, D. E. W. Journal of the American Chemical Society
    2003, 125, 16035-16039.
    [58] Wagner, P.; Yoshikawa, M.; Tsuji, K.; E. Davis, M.; Wagner, P.; Lovallo, M.;
    Taspatsis, M. Chemical Communications 1997, 2179-2180.
    [59] Davis, M. E. Nature 2002, 417, 813.
    [60] Dessau, R. M.; Valyocsik, E. W.; Goeke, N. H. Zeolites 1992, 12, 776-779.
    [61] Čižmek, A.; Subotić, B.; Aiello, R.; Crea, F.; Nastro, A.; Tuoto, C. Microporous
    Materials 1995, 4, 159-168.
    [62] Groen, J. C.; Abelló, S.; Villaescusa, L. A.; Pérez-Ramírez, J. Microporous and
    Mesoporous Materials 2008, 114, 93-102.
    [63] Groen, J. C.; Jansen, J. C.; Moulijn, J. A.; Pérez-Ramírez, J. The Journal of
    Physical Chemistry B 2004, 108, 13062-13065.
    [64] Johan, C. G. A. A. P. L. A. M. J., P. R. Javier, Chemistry-A European Journal
    2005, 4983-4994.
    [65] van Donk, S.; Janssen, A. H.; Bitter, J. H.; de Jong, K. P. Catalysis Reviews
    2003, 45, 297-319.
    [66] Parikh, P. A.; Subrahmanyam, N.; Bhat, Y. S.; Halgeri, A. B. Journal of
    Molecular Catalysis 1994, 88, 85-92.
    [67] Apelian, M. R.; Fung, A. S.; Kennedy, G. J.; Degnan, T. F. The Journal of
    Physical Chemistry 1996, 100, 16577-16583.
    [68] Kim, J.; Choi, M.; Ryoo, R. Journal of Catalysis 2010, 269, 219-228.
    [69] Lee, G. S.; Maj, J. J.; Rocke, S. C.; Garcés, J. M. Catal Lett 1989, 2, 243-247.
    [70] Kerr, G.; Chester, A.; Olson, D. Catal Lett 1994, 25, 401-402.
    [71] H. K. Beyer, I. B., Studies in Surface Science and Catalysis, Elsevier 1980, 5,
    203-210.
    [72] Goyvaerts, D. J. A. M. P. J. G., P. A. Jacobs, in Studies in Surface Science and
    Catalysis, Elsevier 1991, 63, 381-395.
    [73] Boisen, A.; Schmidt, I.; Carlsson, A.; Dahl, S.; Brorson, M.; Jacobsen, C. J. H.
    Chemical Communications 2003, 958-959.
    [74] Z. X. Yang, Y. D. X., R. Mokaya, Advanced Materials 2004, 16, 727-732.
    [75] Fan, W.; Snyder, M. A.; Kumar, S.; Lee, P.-S.; Yoo, W. C.; McCormick, A. V.;
    Lee Penn, R.; Stein, A.; Tsapatsis, M. Nat Mater 2008, 7, 984-991.
    [76] Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. Journal
    of the American Chemical Society 2000, 122, 7116-7117.
    [77] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature
    1992, 359, 710-712.
    [78] Na, K.; Choi, M.; Ryoo, R. Microporous and Mesoporous Materials 2013, 166,
    3-19.
    [79] Karlsson, A.; Stöcker, M.; Schmidt, R. Microporous and Mesoporous Materials
    1999, 27, 181-192.
    [80] Wang, H.; Pinnavaia, T. J. Angewandte Chemie International Edition 2006, 45,
    7603-7606.
    [81] Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D.-H.; Ryoo, R. Nat
    Mater 2006, 5, 718-723.
    [82] Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009,
    461, 246-249.
    [83] Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, B.
    F.; Ryoo, R. Science 2011, 333, 328-332.
    [84] Ferrini, P.; Rinaldi, R. Angewandte Chemie International Edition 2014, 53,
    8634-8639.
    [85] Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A. Angewandte Chemie
    International Edition 2009, 48, 3987-3990.
    [86] Güvenatam, B.; Kurşun, O.; Heeres, E. H. J.; Pidko, E. A.; Hensen, E. J. M.
    Catalysis Today 2014, 233, 83-91.
    [87] Balaji, B. S.; Sasidharan, M.; Kumar, R.; Chanda, B. Chemical Communications
    1996, 707-708.
    [88] Cheng, Y.-T.; Wang, Z.; Gilbert, C. J.; Fan, W.; Huber, G. W. Angewandte
    Chemie International Edition 2012, 51, 11097-11100.
    [89] Robin J. White, R. L., Vitaliy L. Budarin, James H. Clark, Duncan J.
    Macquarrie, Chem. Soc. Rev. 2009, 38, 481-494.
    [90] Kim, J.-C.; Lee, S.; Cho, K.; Na, K.; Lee, C.; Ryoo, R. ACS Catalysis 2014, 4,
    3919-3927.
    [91] Lee, W.-S.; Cem Akatay, M.; Stach, E. A.; Ribeiro, F. H.; Nicholas Delgass, W.
    Journal of Catalysis 2012, 287, 178-189.
    [92] Nares, R.; Ramírez, J.; Gutiérrez-Alejandre, A.; Louis, C.; Klimova, T. The
    Journal of Physical Chemistry B 2002, 106, 13287-13293.
    [93] Demel, J.; Sujandi; Park, S.-E.; Čejka, J.; Štěpnička, P. Journal of Molecular
    Catalysis A: Chemical 2009, 302, 28-35.
    [94] Lin, C.-J.; Huang, S.-H.; Lai, N.-C.; Yang, C.-M. ACS Catalysis 2015, 4121-
    4129.
    [95] Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. ACS Catalysis
    2013, 3, 1700-1708.
    [96] Mandal, S.; Roy, D.; Chaudhari, R. V.; Sastry, M. Chemistry of Materials 2004,
    16, 3714-3724.
    [97] Didgikar, M. R.; Roy, D.; Gupte, S. P.; Joshi, S. S.; Chaudhari, R. V. Industrial &
    Engineering Chemistry Research 2010, 49, 1027-1032.
    [98] Schuchardt, U.; Cardoso, D.; Sercheli, R.; Pereira, R.; da Cruz, R. S.; Guerreiro,
    M. C.; Mandelli, D.; Spinacé, E. V.; Pires, E. L. Applied Catalysis A: General
    2001, 211, 1-17.
    [99] Li, H.; Liu, J.; Xie, S.; Qiao, M.; Dai, W.; Lu, Y.; Li, H. Advanced Functional
    Materials 2008, 18, 3235-3241.
    [100] Makowski, P.; Demir Cakan, R.; Antonietti, M.; Goettmann, F.; Titirici, M.-M.
    Chemical Communications 2008, 999-1001.
    [101] Huber, G. W.; Iborra, S.; Corma, A. Chemical Reviews 2006, 106, 4044-4098.
    [102] Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M.
    Chemical Reviews 2010, 110, 3552-3599.
    [103] Mortensen, P. M.; Grunwaldt, J. D.; Jensen, P. A.; Knudsen, K. G.; Jensen, A.
    D. Applied Catalysis A: General 2011, 407, 1-19.
    [104] Huber, G. W.; Corma, A. Angewandte Chemie International Edition 2007, 46,
    7184-7201.
    [105] Stöcker, M. Angewandte Chemie International Edition 2008, 47, 9200-9211.
    [106] Wang, H.; Male, J.; Wang, Y. ACS Catalysis 2013, 3, 1047-1070.
    [107] Pandey, M. P.; Kim, C. Chemical Engineering & Technology 2011, 34, 29-41.
    [108] N. Mahata, V. V., J. Catal. 2000, 196, 262-270.
    [109] Mahata, N.; Raghavan, K. V.; Vishwanathan, V. Applied Catalysis A: General
    1999, 182, 183-187.
    [110] Claus, P.; Berndt, H.; Mohr, C.; Radnik, J.; Shin, E.-J.; Keane, M. A. Journal of
    Catalysis 2000, 192, 88-97.
    [111] Neri, G.; Visco, A. M.; Donato, A.; Milone, C.; Malentacchi, M.; Gubitosa, G.
    Applied Catalysis A: General 1994, 110, 49-59.
    [112] Chatterjee, M.; Kawanami, H.; Sato, M.; Chatterjee, A.; Yokoyama, T.; Suzuki,
    T. Advanced Synthesis & Catalysis 2009, 351, 1912-1924.
    [113] Liu, H.; Jiang, T.; Han, B.; Liang, S.; Zhou, Y. Science 2009, 326, 1250-1252.
    [114] Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. Journal of the American
    Chemical Society 2011, 133, 2362-2365.
    [115] Pérez, Y.; Fajardo, M.; Corma, A. Catalysis Communications 2011, 12, 1071-
    1074.
    [116] Liu, H.; Li, Y.; Luque, R.; Jiang, H. Advanced Synthesis & Catalysis 2011,
    353, 3107-3113.
    [117] Li, Z.; Liu, J.; Xia, C.; Li, F. ACS Catalysis 2013, 3, 2440-2448.
    [118] Zhu, J.-F.; Tao, G.-H.; Liu, H.-Y.; He, L.; Sun, Q.-H.; Liu, H.-C. Green
    Chemistry 2014, 16, 2664-2669.
    [119] Chase, Z. A.; Fulton, J. L.; Camaioni, D. M.; Mei, D.; Balasubramanian, M.;
    Pham, V.-T.; Zhao, C.; Weber, R. S.; Wang, Y.; Lercher, J. A. The Journal of
    Physical Chemistry C 2013, 117, 17603-17612.
    [120] Yang, C. M.; Lin, H. A.; Zibrowius, B.; Spliethoff, B.; Schüth, F.; Liou, S. C.;
    Chu, M. W.; Chen, C. H. Chem. Mater. 2007, 19, 3205-3211.
    [121] Pine, S. H.; Sanchez, B. L. Journal of Organic Chemistry 1971, 36, 829-832.
    [122] Varoon, K.; Zhang, X.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee,
    J. A.; Maheshwari, S.; Mittal, A.; Sung, C.-Y.; Cococcioni, M.; Francis, L. F.;
    McCormick, A. V.; Mkhoyan, K. A.; Tsapatsis, M. Science 2011, 334, 72-75.
    [123] Bui, L.; Luo, H.; Gunther, W. R.; Román-Leshkov, Y. Angewandte Chemie
    International Edition 2013, 52, 8022-8025.
    [124] Bejblová, M.; Procházková, D.; Čejka, J. ChemSusChem 2009, 2, 486-499.
    [125] Weingarten, R.; Tompsett, G. A.; Conner Jr, W. C.; Huber, G. W. Journal of
    Catalysis 2011, 279, 174-182.
    [126] Kříž, O.; Čásenský, B.; Lyčka, A.; Fusek, J.; Heřmánek, S. Journal of Magnetic
    Resonance 1984, 60, 375-381.
    [127] Lónyi, F.; Valyon, J. Microporous and Mesoporous Materials 2001, 47, 293-
    301.
    [128] Farneth, W. E.; Gorte, R. J. Chemical Reviews 1995, 95, 615-635.
    [129] Parry, E. P. Journal of Catalysis 1963, 2, 371-379.
    [130] Corma, A. Chemical Reviews 1995, 95, 559-614.
    [131] Chaube, V. D. Catalysis Communications 2004, 5, 321-326.
    [132] van Herwijnen, H. W. G.; Brinker, U. H. The Journal of Organic Chemistry
    2001, 66, 2874-2876.
    [133] Román-Leshkov, Y.; Moliner, M.; Labinger, J. A.; Davis, M. E. Angewandte
    Chemie International Edition 2010, 49, 8954-8957.
    [134] A. Sen, T. W. L., J. Am. Chem. Soc. 1981, 103, 4627-4629.
    [135] Shore, S. G.; Ding, E.; Park, C.; Keane, M. A. Journal of Molecular Catalysis
    A: Chemical 2004, 212, 291-300.
    [136] Yilmaz, N.; Mizukami, M.; Kurihara, K. Langmuir 2007, 23, 6070-6075.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE