研究生: |
許原彰 |
---|---|
論文名稱: |
高 光纖/波導 光耦合效率之新型光波導分光器之研究 Design of a New-Type Beam Splitter with High Fiber/Waveguide Coupling Efficiency. |
指導教授: | 王立康 |
口試委員: |
施閔雄
李明昌 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 波導 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光纖通訊中常常使用單模光纖(Single Mode Fiber)來傳送單一模態的光,因為其色散小,所以適合拿來做長距離的傳播,其結構是由中心(core)折射率較高的玻璃材料與外面包覆(cladding)折射率稍低的玻璃材料組成,利用全反射原理,讓光沿著光纖前進,要維持單模態主要由兩個參數決定,一是中心core與外面cladding的折射率差,一是光纖截面積,折射率差與截面積越小越容易形成單模態,一般單模光纖材料以二氧化矽(SiO2)為主,core再摻入其他氧化物(如P2O5)來提高折射率,其core直徑約8-10μm,光纖接其他元件時,如果modefield不匹配,就會有耦合耗損(coupling loss)過大的問題。傳統的矽通波導,因為core與外面cladding折射率差過大,如果要維持單模態則截面積必須做的比單模光纖小很多[1] [2][3],造成耦合耗損過大,本論文一樣以矽(Silicon)為材料,但提出一種與光纖具有高耦合效率的新型結構,再將光做分光。
[1]R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. QE-27, pp. 1971-1974, 1986
[2] S. P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode conditionfor semiconductor rib waveguides with large cross-section,” J. Lightwave Technol., vol. 16, pp. 1851–1853, 1998
[3] Yurii A. Vlasov and Sharee J. McNab, ‘‘Losses in single-mode silicon-on-insulator strip waveguides and bends,’’ Opt. Express 12, 1622, 2004
[4]P. Dainesi, L. Thevenaz, and P. H. Robert, “Intensity modulator in two Mach-Zehnder interferometers using plasma dispersion in silicon -on-insulator,” Appl. Phys. B, vol. 73, pp. 475–478, May 2001.
[5] G. V. Treyz, P. G. May, and Jean-Marc Halbout “Silicon mach-zehnder waveguide interferometers based on the plasma dispersion effect” Appl. Phys. Lett. 59 (7), 12 august 1991.
[6] D. S. Rubio, L. Liao, A. Liu, R. Jones and M. Paniccia, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” Optical Society of America, 2004.
[7]Ozdal Boyraz and Bahram Jalali, “Demonstration of a silicon Raman laser”, Opt. Express, vol.12, pp. 5269-5273, 2004
[8] Ozdal Boyraz, Dimitri Dimitropoulos and Bahram Jalali, “Observation of
simultaneous Stokes and anti-Stokes emission in a silicon Raman laser”, IEICE
Electron. Express, vol.1, pp. 435-441, 2004
[9] S. M. Spillane, T. J. Kippenberg and K. J. Vahala, “Ultralow-threshold Raman laser using spherical dielectric microcavity”, Nature, vol. 415,pp. 621-623, 2002
[10]Bahram Jalali,Mario Paniccia,and Graham Reed(2006). “Silicon photonics. ”IEEE microwave magazine 7(3):58-68.
[11]Hunsperger, R.G. , Intergratrd Optics,Fifth Edition,pp.114-127(2002)
[12] Moerman, I. , Van Daele, P.P. and Demeester, P.M. , “An out-of-plane grating coupler for efficient butt-coupling between compact planar qaveguides and single-mode fibers,”IEEE Journal of selected topics in Quantum Electonics, vol.3,pp. 1308-1320(1997)
[13] Compact slanted grating couplers,Bin Wang, Jianhua Jiang, and Gregory Nordin .Optics Express, Vol. 12, Issue 15, pp. 3313-3326 (2004)
[14] Hybrid laser-to-fiber coupler with a cylindrical lens,M. Maeda, 1. Ikushima, K. Nagano, M. Tanaka, H. Nakashima, and R. Itoh. 1970 APPLIED OPTICS / Vol. 16, No. 7 / July 1977.
[15] Nanotaper for compact mode conversion ,Vilson R. Almeida, Roberto R.Panepucci, and Michal Lipson. 2003 Optical Society of America.
[16] Coupling of single mode fibers to planar Si waveguides using vertically tapered mode converters.M. B. Frish, J.A. Fijol, E. E. Fike, S. A. Jacobson, P. B. Keating, W. J. Kessler, and J. LeBlanc.2002 OSA/IPR 2002.
[17] Vertically Tapered Epilayers for Low-Loss Waveguide–Fiber Coupling Achieved in a Single Epitaxial Growth Run R. S. Balmer, J. M. Heaton, J. O. Maclean, S. G. Ayling, J. P. Newey, M. Houlton, P. D. J. Calcott, D. R. Wight, and T. Martin. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 1, JANUARY 2003
[18] Richard Syms John Cozens, Optical guided waves and devices, New York,
Mcgraw-Hill, 1992
[19].Saleh,B.E.A and M.C. ,Fundamentals of Photonisc Second Edition ,Chapter 7,Wiley.
[20] David K. Cheng, Field and Wave Electromagnetics, 2nd ed, Addison-Wesley Pub. Co, 1989
[21]BeamPROPTM(BPM) and FullWAVETM(FDTD) from Rsoft Design Group,Inc.
[22]利用Expanded-Core結構耦合光纖與矽通波導,宋璟智(2009)
[23] Analysis of high-confinement SiGe/Si waveguides for silicon-based optoelectronics.S. P. Pogossian* and L. Vescan, A. Vonsovici. 1999 Optical Society of America.
[24]H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S.Luryi, ‘‘GexSi12xstrained layer superlattice waveguide photodetectors operating near 1.3 mm,’’ Appl. Phys. Lett. 48,963–965 (1986).
[25] J. W. Matthews and A. E. Blakeslee, ‘‘Defects in epitaxial multilayers I. Misfit dislocations,’’ J. Cryst. Growth 27,118–125 (1974).
[26]T. Stoica and L. Vescan, ‘‘Misfit dislocations in finite lateral size Si12xGex films grown by selective epitaxy,’’ J. Cryst. Growth 131, 32–40 (1993).
[27] Caculation of critica layer thickness versus lattice mismatch for GeX Si1-x/Si strained-layer heterostructures R. People and J. C. Bean AT&T Bell Laboratories. Murray Hill. New Jersey 07974 (Received 18 April 1985; accepted for publication 23 May 1985)
[28] R. A. Soref, F. Namavar, and J. P. Lorenzo, ‘‘Optical waveguiding in a single-crystal layer of germanium silicon grown on silicon,’’ Opt. Lett. 15, 270–272 (1990).
[2] Lin Hanbin, Cheng Reishin, Wang Wayseen. Wide-angle Low-loss Single-mode Symmetric Y-junctions [J]. IEEE Photon Technol Lett, 1994, 6(7): 825-827.
[30]S.M.Sze,SEMICONDUCTOR DEVICE Physics and Technology,Wiley,2002.
[31] G. P. Agrawal, Fiber-Optical Communication Systems, John Wiley and Sons, New York, 1997.
[32]Michal Lipson, “Guiding, Modulating, and Emitting Light on Silicon-Challenges and Opportunities” Journal of Lightwave Technology, vol. 23, no. 12, pp. 4222-4238, 2005
[33] R. A. Soref, J. Schmidtchen, and K. Petermann, ‘‘Large single mode RIB waveguides in GeSi-Si and Si-on-SiO2,’’IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[34] K. Petermann, ‘‘Properties of optical RIB waveguides with large cross section,’’ Archiv Electronik Ubertragungstechnik AEU-30, 139–140 (1976).
[35] S. P. Pogossian, L. Vescan, and A. Vonsovici, ‘‘The single mode condition for semiconductor rib waveguides with large cross-section,’’ J. Lightwave Technol. 161851–1853 (1998)