研究生: |
黃維寧 Wei-Ning Huang |
---|---|
論文名稱: |
眼鏡蛇心臟毒素在細胞膜形成孔洞之機制研究 The Study of Pore Formation Mechanism of the Cobra Cardiotoxin on Membranes. |
指導教授: |
吳文桂
Wen-Guey Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 心臟毒素 、細胞膜 、紅外線 、孔洞 、電腦模擬 、螢光 、衰減全反射 、脂質 |
外文關鍵詞: | cardiotoxin, membrane, infrared, pore, computer simulation, fluorescence, atr, lipid |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心臟毒素蛋白在眼鏡蛇蛇毒中佔了約二分之一的量,但其對動物的毒性約只有蛇毒素中神經毒素的十分之一。這個60至62胺基酸,以□摺板為主的鹼性蛋白,以演化的觀點來說,如此多的量卻又不是眼鏡蛇毒殺生物的主要分子,想必有其其他功能才是。但是從1947年發現至目前為止,除了不算強的毒殺細胞能力外,尚未找出其他具專一性的功能,即使是毒殺細胞一事,其毒殺之分子機制也尚無確切的了解。由過去的研究發現,心臟毒素與負電荷的脂質膜有很強的結合能力,也會造成細胞膜的導電性增加,因此目前大多數認可的生物作用機制是心臟毒素作用於細胞膜上的脂質分子並擾動了膜的通透性而造成了細胞的死亡。
在此論文中利用各種光譜技術及電腦模擬方法嘗試將心臟毒素作用於人工細胞膜上的過程一一分析釐清,其所獲得的結論有下列幾點。
一、 當心臟毒素結合於負電脂質膜時,除了結合強度上比中性脂質強之外,其結合的模式也不一樣。在負電脂質膜上,心臟毒素會聚集成多聚體並形成直徑2.5~10奈米之孔洞,造成細胞膜的洩漏。
二、 以單層分子膜技術使心臟毒素與脂質膜的結合被固定在初始結合步驟時可以發現,在中性與負電性脂質上的結合方式大致相同,心臟毒素以48度斜角插於膜上,插入深度則是負電性脂質膜較深。以平均埸方法計算心臟毒素結合於膜上之模式發現改變脂質膜頭部電位可以使心臟毒素由表面結合模式轉變為深埋插入模式。
三、 水溶液中的心臟毒素結合到負電性脂質膜後會進行一連串的後續過程,從單體聚集成多聚體(幾秒)、形成孔洞(幾十秒)、孔洞閉合(十幾毫秒)、形成非孔洞之抗水解酵素複合體(約一分鐘)。
雖然心臟毒素與人工脂質膜的交互作用研究目前已有稍具清晰的梗概,但對其在真實世界中所扮演的角色仍是曖昧不清。如果要說此篇論文對心臟毒素在生物上的作用有了更多的了解,我並不敢如此地說,比較合適的說法是透過心臟毒素與負電性脂質膜的研究讓我們對膜活性分子與細胞膜的作用有了較多的認識。心臟毒素與生物細胞的作用機制的了解我想需要更多研究者的投入及更大的想像力之挹注。
The Study of Pore Formation Mechanism of the Cobra Cardiotoxin on Membranes.
參考資料
第一章
1. Harvey, A.L., (1990) Snake Toxins. Pergamon press.
2. 譚公平, (1995)中國毒蛇學廣西科學技術出能版社.
3. Fruchart-Gaillard, C., Gilquin, B., Antil-Delbeke, S., Le Novere, N., Tamiya, T., Corringer, P.J., Changeux, J.P., Menez, A. and Servent, D. (2002) Experimentally based model of a complex between a snake toxin and the alpha 7 nicotinic receptor.Proc Natl. Acad. Sci. U. S. A. 99, 3216-21 .
4. Kini, R.M. and Evans, H.J. (1989) A model to explain the pharmacological effects of snake venom phospholipases A2.Toxicon. 27, 613-35.
5. Valentin, E. and Lambeau, G. (2000) What can venom phospholipase A2 tell us about the functional diversity of mammalian secreted phospholipase A2? Biochimie 82, 815-831.
6. Zusman, N., Miklas, T.M., Graves, T., DMBch, G.E. and Hudson, R.A. (1984) On the interaction of cobra venom protin cardiotoxins with erythrocytes. Biochem. Biophys. Res. Commun. 124, 629-636
7. Liou, R.F., Chang, W.C., Chu, S.T. and Chen, Y.H. (1993) Snake venom cardiotoxin can rapidly induce actin polymerization in intact platelets. Biochem. J. 290 ( Pt 2), 591-594.
8. Tzeng, W.F. and Chen, Y.H. (1988) Suppression of snake-venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca+2 influx or inhibition of non-lysosomal proteinases. Biochem. J. 256, 89-95.
9. Zaheer, A. and Braganca B.M. (1980) Comparative study of three basic polypeptides from snake venoms in relation to their effects on the cell membrane of normal and tumor cells. Cancer abiochem. Biophys. 5, 41-46.
10. Bougis, P.E., Khelif, A. and Rochat, H. (1989) On the inhibition of [Na+,K+]-ATPases by the components of Naja mossambica mossambica venom: evidence for two distinct rat brain [Na+,K+]-ATPase activities. Biochemistry. 28, 3037-3043.
11. Raynor, R.L., Zheng, B. and Kuo, J.F. (1991) Membrane interactions of amphiphilic polypeptides mastoparan, melittin, polymyxin B, and cardiotoxin. Differential inhibition of protein kinase C, Ca2+/calmodulin-dependent protein kinase II and synaptosomal membrane Na,K-ATPase, and Na+ pump and differentiation of HL60 cells. J Biol Chem. 266, 2753-2758.
12. Ou, Y.J., Leung, Y.M., Huang, S.J. and Kwan, C.Y. (1997) Dual effects of extracellular Ca2+ on cardiotoxin-induced cytotoxicity and cytosolic Ca2+ changes in cultured single cells of rabbit aortic endothelium. Biochim Biophys Acta. 1330, 29-38.
13. Grognet, J.M., Menez, A., Drake, A., Hayashi, K., Morrison, I.E. and Hider, R,C. (1988) Circular dichroic spectra of elapid cardiotoxins. Eur. J. Biochem. 172, 383-388.
14. Surewicz, W.K., Stepanik, T.M., Szabo, A.G. and Mantsch, H.H. (1988) Lipid-induced changes in the secondary structure of snake venom cardiotoxins. J. Biol. Chem. 263, 786-790.
15. Rees, B., Samama, J.P., Thierry, J.C., Gilibert, M., Fischer, J., Schweitz, H., Lazdunski, M. and Moras, D. (1987) Crystal structure of a snake venom cardiotoxin. Proc. Natl. Acad. Sci. U. S. A. 84, 3132-3126.
16. Bilwes, A., Rees, B., Moras, D. and Menez, R. (1994) X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J. Mol. Biol. 239, 122-136.
17. O'Connell, J.F., Bougis, P.E. and Wuthrich, K. (1993) Determination of the nuclear-magnetic-resonance solution structure of cardiotoxin CTX IIb from Naja mossambica mossambica. Eur. J. Biochem. 213, 891-900.
18. Chien, K.Y., Chiang, C.M., Hseu, Y.C., Vyas, A.A., Rule, G.S. and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J. Biol. Chem. 269,14473-14483.
19. Dauplais, M., Neumann, J.M., Pinkasfeld, S., Menez, A. and Roumestand, C. (1995) An NMR study of the interaction of cardiotoxin gamma from Naja nigricollis with perdeuterated dodecylphosphocholine micelles. Eur. J. Biochem. 230, 213-220.
20. Sue, S.C., Jarrell, H.C., Brisson, J.R. and Wu, W. (2001) Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry. 40, 12782-12794.
21. Dementieva, D.V., Bocharov, E.V. and Arseniev, A.S. (1999) Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: spatial structures with tightly bound water molecules. Eur. J. Biochem. 263,152-162.
22. Dubovskii, P.V., Dementieva, D.V., Bocharov, E.V., Utkin, Y.N. and Arseniev, A.S. (2001) Membrane binding motif of the P-type cardiotoxin. J. Mol. Biol. 305, 137-49
23. Sun, Y.J., Wu, W., Chiang, C.M., Hsin, A.Y. and Hsiao, C.D. (1997) Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Biochemistry. 36, 2403-2413.
24. Wu, C.Y., Chen, W.C., Ho, C.L., Chen, S.T. and Wang, K.T. (1997) The role of the N-terminal leucine residue in snake venom cardiotoxin II (Naja naja atra). Biochem. Biophys. Res. Commun. 233, 713-716.
25. Carlsson, F.H. (1987) The selective S-alkylation of a methionine residue in an elapid venom cardiotoxin. Int. J. Biochem. 19, 915-921.
26. Carlsson, F.H. and Louw, A.I. (1987) The oxidation of methionine and its effect of the properties of cardiotoxin VII1 from Naja melanoleuca venom. Biochim. Biophys. Acta. 534, 322-330.
27. Stevens-Truss, R and Hinman, C.L. (1996) Chemical modification of methionines in a cobra venom cytotoxin differentiates between lytic and binding domains. Toxicol. Appl. Pharmacol. 139, 234-242.
28. Gatineau, E., Toma, F., Montenay-Garestier, T., Takechi, M., Fromageot, P. and Menez, A. (1987) Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. Biochemistry. 26, 8046-8055.
29. Hung, M.C., Pan, Y.H., Cheng, K.L. and Chen, Y.H. (1978) The status of tyrosyl residues in a Formosan cobra cardiotoxin. Biochim. Biophys. Acta. 535, 178-187.
30. Gatineau, E., Takechi, M., Bouet, F., Mansuelle, P., Rochat, H., Harvey, A.L., Montenay-Garestier, T. and Menez, A. (1990) Delineation of the functional site of a snake venom cardiotoxin: preparation, structure, and function of monoacetylated derivatives. Biochemistry. 29, 6480-6489.
31. Vincent, J.P., Schweitz, H., Chicheportiche, R., Fosset, M., Balerna, M., Lenoir, M.C. and Lazdunski, M. (1976) Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry. 15,3171-3175.
32. Dufourcq, J. and Faucon, J.F. (1978) Specific binding of a cardiotoxin from Naja mossambica mossambica to charged phospholipids detected by intrinsic fluorescence. Biochemistry. 17,1170-1176.
33. Chien, K.Y., Huang, W.N., Jean, J.H., Wu, W. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues. J. Biol. Chem. 266, 3252-3259.
34. Efremov, R.G., Volynsky, P.E., Nolde, D.E., Dubovskii, P.V. and Arseniev, A.S. (2002) Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys. J. 83, 144-153.
35. Desormeaux, A., Laroche, G., Bougis, P.E. and Pezolet, M. (1992) Characterization by infrared spectroscopy of the interaction of a cardiotoxin with phosphatidic acid and with binary mixtures of phosphatidic acid and phosphatidylcholine. Biochemistry. 31, 12173-12182.
36. Picard, F., Pezolet, M., Bougis, P.E. and Auger, M. (1996) Model of interaction between a cardiotoxin and dimyristoylphosphatidic acid bilayers determined by solid-state 31P NMR spectroscopy. Biophys. J. 70, 1737-1744.
37. Bougis, P., Rochat, H., Pieroni, G. and Verger, R. (1981) Penetration of phospholipid monolayers by cardiotoxins. Biochemistry. 20, 4915-4920.
38. Bougis, P., Rochat, H., Pieroni, G. and Verger, R. (1982) A possible orientation change of cardiotoxin molecule during its interaction with phospholipid monolayer. Toxicon. 20, 187-190.
39. Batenburg, A.M., Bougis, P.E., Rochat, H., Verkleij, A.J. and de Kruijff, B. (1985) Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemistry. 24, 7101-7110.
40. Vyas, A.A., Pan, J.J., Patel, H.V., Vyas, K.A., Chiang, C.M., Sheu, Y.C., Hwang, J.K. and Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J. Biol. Chem. 72, 9661-9670.
41. Vyas, K.A., Patel, H.V.,, Vyas, A.A. and Wu, W. (1998) Glycosaminoglycans bind to homologous cardiotoxins with different specificity. Biochemistry. 37, 4527-4534.
42. Hawgood BJ. (2002) Professor Chen-Yuan Lee, MD (1915-2001), pharmacologist: snake venom research at the Institute of Pharmacology, National Taiwan University. Toxicon. 40,1065-1072.
第二章
1. 洪水根,汪德耀 (1997)膜分子生物學, 水產出版社.
2. Petty, M. C. (1996) Langmuir-Blodgett films. An introduction. Cambridge University press.
3. Brown, D. A. and Landon, E. (2000) Structure and function of sphingolipid-and-cholesterol-rich membrane rafts J. Biol. Chem. 275, 17221-17224.
4. Anderson, R. G. W. and Jacobson, K. (2002) A role for lipid shells in tareting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821-1825.
5. Killian, J.A. and Heijne, G. (2000) How protein adapt to a membrane-water interface. Trends Biochem. Sci. 25, 429-434
6. Killian, J.A. (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta. 1376, 401-415.
7. Ludtke, S. and Huang, H. (1995) Membrane tninning caused by magainin 2. Biochemistry 34, 16764-16769.
8. Sitaram, N. and Nagaraj, R. (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity Biochim. Biophys. Acta. 1462, 29-54
9. Matsuzaki, K. (1999) Why and how are peptide-lipid interactions utilized for self-defense magainins and tachyplesins as archetype. Biochim. Biophys. Acta. 1462, 1-10
10. Lehrer, R.I. and Ganz, T. (1996) Endogenous vertebrate antibiotics. Defensins, protegrins, and other cysteine-rich antimicrobial peptides. Ann. N. Y. Acad. Sci. 797, 228-39.
11. Ladokhin, A.S. and White, S.H. (2001) 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta. 1514, 253-60.
12. Heller, W.T., Waring, A.J., Lehrer, R.I. and Huang, H.W. (1998) Multiple states of beta-sheet peptide protegrin in lipid bilayers. Biochemistry 37, 17331-17338.
13. Wu, Y., Huang, H.W. and Olah, G.A.(1990) Method of oriented circular dichroism. Biophys. J. 57, 797-806.
14. Matsuzaki, K., Yoneyama, S. and Miyajima, K. (1997) Pore formation and translocation of melittin. Biophys. J. 73, 831-838.
15. Rex, S. and Schwarz, G. (1998) Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles. Biochemistry 37, 2336-2345.
16. Zhang, L., Rozek, A. and Hancock, R.E. (2001) Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276, 35714-35722.
17. Wender, P.A., Mitchell, D.J., Pattabiraman, K., Pelkey, E.T., Steinman, L. and Rothbard, J.B. (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A. 97, 13003-13008.
18. Shai, Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta. 1462, 55-70
19. Huang, H.W. (2000) Action of antimicroial peptides: two-state model. Biochemistry 39, 8347-8352.
20. Yang, L., Harroun, T. A., Weiss, T. M. ding, L. and huang, H. W. (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81, 1475-1485.
21. Siegel, D.P. (1993) Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys. J. 65, 2124-2140.
22. Siegel, D.P. (1999) The modified stalk mechanism of lamellar/inverted phase transitions and its implication for membrane fusion. Biophys. J. 76, 291-313
23. Markin, V. and Albanes, J.P. (2002) Membrane fusion: stalk model revisited. Biophys. J. 82, 693-712.
24. Yang, L. and Huang, H. W. (2002) Observation of a membrane fusion intermediate structure. Science 297, 1877-1879.
25. Mayer, A. (2001) What drives membrane fusion in eukaryotes? Trends. Biochem. Sci. 26, 717-23.
26. Jahn, R. and Grubmuller, H. (2002) Membrane fusion. Curr. Opin. Cell Biol. 14, 488-495.
第三章
1. Campbell, I. D. and Dwek, R. A. (1984) Biological spectroscopy. Benjamin/Cummings.
2. Chen. R. F. and Knutson, J. R. (1988) Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Analy. Biochem. 172, 61-77.
3. Scarlata, S. Ehrlich, L. S. and Carter, C. A. (1998) Membrane-induced alterations in HIV-1 Gag and matrix protein-protein interactions. J. Mol. Biol. 277, 161-169.
4. Sharpe, J. C. and Landon, E. (1999) Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: probable relationship to oligomerization. J. Membrane Biol. 171, 209-221.
5. Li, M., Reddy, L. G., Bennett, R. Silva, N. D. Jones, L. R.and Thomas, D. D. (1999) A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys. J. 76, 2587-2599.
第四章
1. 李遠鵬 (1975) 科儀產品新知. 72, 29~35.
2. Tamm L.K. and Tatulian S.A. (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Quart. Rev.Biophy. 30, 365-429.
3. Casal, H. L. and Mantsch, H. H. (1984) Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim. Biophys. Acta. 779, 381-401.
4. Mantsch, H.H. and McElhaney, R. N. (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem. Phys. Lipid 57, 213-226.
5. Casal,H. L. and McElhaney, R. N. (1990) Quantitive determination of hydrocarbon chain conformational order in bilayers of saturated phosphatidyl-cholines of various chain lengths by Fourier transform infrared spectroscopy. Biochemistry 29, 5423-5427.
6. Goni, F. M. and Arrondo, J. L. R. (1986) A study of phospholipid phosphate groups in model membranes by Fourier transform infrared spectroscopy. Faraday Discuss. Chem. Soc. 81, 117-126.
7. Gomez-Fernandez, J. C. and Villalain, J. (1998) The use of FT-IR for quantitative studies of the apparent pKa of lipid carboxyl groups and the dehydration degree of the phosphate group of phospholipid. Chem. Phys. Lipid 96, 41-52.
8. Krimm, S. and Bandekar, J. (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and protein. Adv. Protein Chem. 38, 181-365.
9. Surewicz, W. K. Mantsch, H. H. and Chapman, D. (1993) Determination of protein sccondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389-394.
10. Arrondo, J. L. R., Blanco, F. J. Serrano, L. and Goni, F. M. (1996) Infrared evidence of a □-hairpin peptide structure insolution. FEBS letters 384, 35-37.
11. Chehin, R. Iloro, I., Marcos, M. J., Villar, E., Shnyrov, V. L. and Arrondo, J. L. R. (1999) Thermal and pH-induced conformational changesof a □-sheet protein monitored by infrared spectroscopy. Biochemistry 38, 1525-1530.
12. de Jongh, H. H. J., Goormaghtigh, E. and Ruysschaert, J.-M. (1997) Amide-protein exchange of water-soluble proteins of different structural classes studied at the submolecular level by infrared spectroscopy. Biochemistry 36, 13603-13610.
13. Raussens, V., Narayanaswami, V., Gooemaghtigh, E., Ryan, R. O. and Ruysschaert, J.-M. (1996) Hydrogen/Deuterium exchange kinetics of apolipophorin-III in lipid-free and phospholipid-bound states. J. Biol. Chem. 271, 23089-23095.
14. Griebenow, K. and Kilibanov, A. M. (1995) Lyophilization-induced reversible changes in the secondary structure of proteins. Proc. Natl. Acad. Sci. USA. 92, 10969-10976.
15. Rahmelow, K., Hubner, W. and Ackermann, T. (1998) Infrared absorbances of protein side chains. Analy. Biochem. 257, 1-11.
16. Longas, M. and bBreitweiser, K. L. (1991) Sulfate composition of glycosamino-glycans determined by infrared spectroscopy. Analy. Biochem. 192, 193-196.
17. Lijour, Y. Gentric, E. Deslandes, E. and Guezennec, J. (1994) Estimation of the sulfate content of hydrothermal vent baterial polysaccharides by Fourier transform infrared spectroscopy. Analy. Biochem. 220, 244-248.
18. Grant, D., Long, W. F., Moffat, C. F. and Williamson, F. B. (1991) Infared spectroscopy of heparins suggests that the region 750-950cm-1 is sensitive to change in iduronate residue ring conformation. Biochem. J. 275, 193-197.
19. Cheng, H., Sukal, S., Callender, R. and Leyh, T. (2001) r-Phosphate protonation and pH-dependent unfolding of the Ras-GTP.Mg2+ complex. J. Biol. Chem. 276, 9931-9935.
20. El-Mabdaoui, L., Neault, f. F. and Tajmir-Riabi, H. A. (1997) Carbohydrate-nucleotide interaction. The effects of mono- and disaccharides on the solution structure of AMP, dAMP, ATP, GMP, dGTP, and GTP studied by FTIR difference spectroscopy. J. Inorg. Biochem. 65, 123-131
21. Jamin, N., Dumas, P., Moncuit, J., Fridman, W.H., Teillaud, J.L., Carr, G.L. and Williams, G.P. (1998) Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. Proc. Natl. Acad. Sci. U. S. A. 95, 4837-4840.
22. Wetzel, D. L. and LeVine, S. M. (1999) Imaging molecular chemistry with infrared microscopy. Science 285, 1224-1225.
23. Dong, A., Huang, P. and Caughey, W.S. (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29, 3303-3308.
24. Susi, H. and Byler, D. M. (1986) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130, 290-311.
25. James, D. I., Maddams, W. F. and Tooke, P. B. (1987) The use of Fourier deconvolution in infrared spectroscopy. Part I: studies with synthetic single-peak system. Appl. Spectrosc. 41, 1362-1370.
26. Moffatt, D. J. and Mantsch, H. H. (1992) Fourier resolution enhancement of infrared spectral data. Methods Enzymol. 210, 192-200.
27. Goormaghtigh, E., Raussens, V. and Ruysschaert, J.-M. (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta. 1422, 105-185.
28. Harrick N. J. (1979) Internal reflection spectroscopy. Ossining, New York.
29. Oberg, K.A. and Fink, A.L. (1998) A new attenuated total reflectance Fourier transform infrared spectroscopy method for the study of proteins in solution. Anal. Biochem. 256, 92-106
30. Marsh, D., Muller, M. and Schmitt, F.J. (2000) Orientation of the infrared transition moments for an alpha-helix. Biophys J. 78, 2499-510.
31. Marsh, D. (1997) Dichroic ratios in polarized Fourier transform infrared for nonaxial symmetry of beta-sheet structures. Biophys. J. 72, 2710-2718.
32. Lafrance, C.-P., Nabet, A., Prud’homme, R. E. and Pezolet, M. (1995) On the relationship between the order parameter <P2(cos s)> and the shape of orientation distributions. Can. J. Chem. 73, 1497-1505.
33. Picard, F., Buffeteau, T., Desbat, B., Auger, M. and Pezolet, M. (1999) Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy. Biophys. J. 76, 539-551.
34. Ter-Minassian-Saraga, L., Okamura, E., Umemura, J. and Takenaka, T. (1988) Fourier transform infrared-attenuated total reflection spectroscopy of hydration of dimyristoylphosphatidylcholine multibilayers. Biochim. Biophys. Acta. 946, 417-423.
35. Okamura, E., Umemura, J. and Takenaka, T. (1985) Fourier transform-infrared-attenuated total reflection spectra of dipalmitoylphosphatidylcholine monomolecular films. Biochim. Biophys. Acta. 812, 139-146.
36. Hubner, W. and Mantsch, H.H. (1991) Orientation of specifically 13C=O labeled phosphatidylcholine multilayers from polarized attenuated total reflection FT-IR spectroscopy. Biophys. J. 59, 1261-72.
37. Okamura, E., Umemura, J. and Takenaka, T. (1986) Orientation of gramicidin D incorporated into phospholipid multibilayers: a Fourier transform infrared-attenuated total reflection spectroscopic study. Biochim. Biophys. Acta. 856, 68-75.
38. Frey, S., Tamm, L.K. (1991) Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys. J. 60, 922-930.
39. Marsh, D. (1998) Nonaxiality in infrared dichroic ratios of polytopic transmembrane proteins. Biophys. J. 75, 354-358.
40. Miller, I.R. and Bach, D. (2000) Organization of water molecules by adhering to oriented layers of dipalmitoylphosphatidyl serine in the presence of varying concentrations of cholesterol. Biochim Biophys Acta. 1468, 199-1202.
41. Cael, J.J., Isaac, D.H., Blackwell, J. and Koenig, J.L. (1976) Polarized infrared spectra of crystalline glycosaminoglycans. Carbohydr. Res. 50, 169-79.
第五章
1. Tieleman, D.P., Marrink, S.J. and Berendsen, H.J. (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta. 1331, 235-270.
2. Berneche, S., Nina, M. and Roux, B. (1998) Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys. J. 75, 1603-1618.
3. Bachar, M. and Becker, O.M. (2000) Protein-induced membrane disorder: a molecular dynamics study of melittin in a dipalmitoylphosphatidylcholine bilayer. Biophys. J. 78, 1359-75.
4. La Rocca, P., Biggin, P.C., Tieleman, D.P. and Sansom, M.S. (1999) Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochim. Biophys. Acta. 1462, 185-200.
5. Roseman, M. A. (1988) Hydrophilicity of polar amino acid Side-chain is markedly reduced by flanking peptide bonds. J. Mol. Biol. 200, 513-522.
6. Biggin, P.C. and Sansom, M.S.P. (1996) Simulation of valtage-dependent interactions of a-helical peptides with lipid bilayers. Biophys. Chem. 60, 99-110.
7. Ducarme, P., Rahman, M. and Brasseur, R. (1998) IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins. 30, 357-371.
8. Ducarme, P., Thomas, A. and Brasseur, R. (2000) The optimisation of the helix/helix interaction of a transmembrane dimer is improved by the IMPALA restraint field. Biochim Biophys Acta. 1509, 148-154.
9. La Rocca, P. Shai, Y. and Sansom, M.S.P. (1999) Peptide-bilayer interactions: simulations of dermaseptin B, an antimicrobial peptide. Biophys. Chem. 76, 145-159.
10. Heller, H., Shaefer, M. and Shulten, K. (1993) Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase J. Phys. Chem. 97, 8343-8360
11. Shinoda, W., Shimizu, M. and Okazaki, S. (1998) Molecular dynamics study on electrostatic properties of a lipid bilayer: polarization, electroststic potential, and the effects on structure and dynamics of water near the interface. J. Phys. Chem. 102, 6647-6654.
12. Lopez Cascales, J.J., Garcia de la Torre, J., Marrink, S.M. and Berendsen, H.J.C. (1996) Molecular dynamics simulation of a charged biological membrane. J. Chem. Phys. 104, 2713-2720.
13. Lopez Cascales, J.J. and Garcia de la Torre (1997) Effect of lithium and sodium ions on a charged membrane of dipalmitoylphosphatidylserine: a study by molecular dynamics simulation. Biochim Biophys Acta. 1330, 145-156.
14. Pandit, S.A. and berkowitz, M.L (2002) Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions. Biophys. J. 82, 1818-1827.
15. Kessel, A., Cafiso, D.S. and Ben-Tal, N. (2000) Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamics aspects. Biophys. J. 78, 571-583.
16. Bransburg-Zabary, S. Kessel, A., Gutman, M. and Ben-Tal, N. (2002) Stability of an ion channel in lipid bilayes: implicit solvent model calculations with gramicidin. Biochemistry 41, 6946-6954.
第六章
1. Lanzetta, P.A., Alvarez, L.J., Reinach, P.S. and Candia, O.A. (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100, 95-97.
2. Ladokhin, A.S., Selsted, M.E. and White, S.H. (1997) Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys. J. 72, 1762-1766.
3. Lin, Y.H., Huang, W.N., Lee, S.C. and Wu, W.G (2000) Heparin reduces the alpha-helical content of cobra basic phospholipase A(2) and promotes its complex formation. Int. J. Biol. Macromol. 27, 171-176.
4. Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G, and Hsiao, C.D. (2003) Structural Basis of Membrane-induced Cardiotoxin A3 Oligomerization. J. Biol. Chem. 278, 21980-21988.
第七章
1. Martin, S.J., Finucane, D.M,, Amarante-Mendes, G.P,, O'Brien, G.A. and Green, D,R. (1996) Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. J. Biol. Chem. 271, 28753-28756.
2. Maget-Dana, R. (1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta. 1462.109-140.
3. Seelig, A., Blatter, X.L., Frentzel, A. and Isenberg, G. (2000) Phospholipid binding of synthetic talin peptides provides evidence for an intrinsic membrane anchor of talin. J. Biol. Chem. 275, 17954-17961.
4. Goormaghtigh, E., Cabiaux, V. and Ruysschaert, J.M. (199) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur. J. Biochem. 193, 409-420.
5. Marsh, D. (1999) Quantitation of secondary structure in ATR infrared spectroscopy. Biophys. J. 77,2630-2637.
第八章
1. Schwarz, G., Zong, R.T. and Popescu, T. (1992) Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim. Biophys. Acta. 1110, 97-104.
2. Schwarz, G. and Arbuzova, A. (1995) Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim. Biophys. Acta. 1239, 51-57.
3. Drin, G., Demene, H., Temsamani, J. and Brasseur. R. (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40, 1824-1834.
附錄A
1. Otting, G., Liepinsh, E. and Wuthrich, K. (1993) Disulfide bond isomerization in BPTI and BPTI (G36S): an NMR study of correlated mobility in proteins. Biochemistry 32, 3571-3582.
2. Sorensen, M.D., Kristensen, S.M., Bjorn, S., Norris, K., Olsen, O. and Led, J.J. (1996) Elucidation of the origin of multiple conformations of the human alpha 3-chain type VI collagen C-terminal Kunitz domain: the reorientation of the Trp21 ring. J. Biomol. NMR. 8, 391-403.
3. Williamson, M.P., Kikuchi, J. and Asakura, T. (1995) Application of 1H NMR chemical shifts to measure the quality of protein structures. J. Mol. Biol. 247, 541-546.
4. Southall, N.T., Dill, K.A. and Haymet, A.D.J. (2002) A view of the hydrophobic effect J. Phys. Chem. B 106, 521-533
5. Schellman, J.A. (1997) Temperature, stability, and the hydrophobic interaction. Biophys. J. 73, 2960-2964.
附錄B
1. Bechor, D., Ben-Tal, N. (2001) Implicit solvent model studies of the interactions of the influenza hemagglutinin fusion peptide with lipid bilayers. Biophys. J. 80, 643-655.
2. Maddox, M.W. and Longo, M.L. (2002) A Monte Carlo study of peptide insertion into lipid bilayers: equilibrium conformations and insertion mechanisms. Biophys. J. 82, 244-263.
3. Fahrner, R.L., Dieckmann, T., Harwig, S.S., Lehrer, R.I., Eisenberg, D. and Feigon, J. (1996) Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem. Biol. 3, 543-550.
4. Bladon, C.M., Bladon, P. and Parkinson, J.A. (1992) Delta-toxin and analogues as peptide models for protein ion channels. Biochem. Soc. Trans. 20, 862-864.
5. Gesell, J., Zasloff, M. and Opella, S.J. (1997) Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR. 9, 127-135.
6. Han, X., Bushweller, J.H., Cafiso, D.S. and Tamm, L.K. (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Biol. 8, 715-720.
7. Terwilliger, T.C. and Eisenberg, D. (1982) The structure of melittin. I. Structure determination and partial refinement. J. Biol. Chem. 257, 6010-6015.
8. Yuan, P., Fisher, P.J., Prendergast, F.G. and Kemple, M.D. (1996) Structure and dynamics of melittin in lysomyristoyl phosphatidylcholine micelles determined by nuclear magnetic resonance. Biophys. J. 70, 2223-2238.
9. Okada, A, Wakamatsu, K., Miyazawa, T. and Higashijima, T. (1994) Vesicle-bound conformation of melittin: transferred nuclear Overhauser enhancement analysis in the presence of perdeuterated phosphatidylcholine vesicles. Biochemistry 33, 9438-9446.
10. Dathe, M. and Wieprecht, T. (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta. 1462,71-87.
11. Wu, C.W., Cheng, S.F., Huang, W.N., Trivedi, V.D., Veeramuthu, B., Assen, B.K., Wu, W.G. and Chang, D.K. (2003) Effects of alterations of the amino-terminal glycine of influenza hemagglutinin fusion peptide on its structure, organization and membrane interactions. Biochim Biophys Acta. 1612, 41-51.