研究生: |
廖祐瑄 Liao, Yu-Hsuan |
---|---|
論文名稱: |
綠膿桿菌PAO1之轉錄因子PsrA於綠膿菌素生合成之調控 Regulation of pyocyanin biosynthesis by transcriptional regulator PsrA in Pseudomonas aeruginosa PAO1 |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: |
賴怡琪
Lai, Yi-Chyi 林靖婷 Lin, Ching-Ting |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 綠膿桿菌 、綠膿菌素 、轉錄因子 PsrA |
外文關鍵詞: | Pseudomonas aeruginosa, pyocyanin, transcriptional regulator PsrA |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綠膿桿菌為一造成院內感染之病原菌。此細菌能產生藍綠色綠膿菌素,為該菌重要毒素之一,可受群體感應影響並對宿主細胞造成氧化壓力而使細胞受損。PsrA 為綠膿桿菌之轉錄因子,在細菌體內調控許多與生理、毒力及群體感應相關的基因表現。而在綠膿桿菌中,PsrA 調控綠膿菌素的生合成機制尚未清楚,因此本研究致力於探討 PsrA 如何調控綠膿桿菌之綠膿菌素生合成。我們藉由轉錄體分析,比較野生株 PAO1 與大量表現 psrA 菌株之綠膿菌素合成相關之調控路徑的基因表現。同時,我們測定大量表現 psrA 菌株及ΔpsrA突變株之綠膿菌素產量、群體感應、胞外多醣產量、溶血活性等,來觀察PsrA對菌體毒性因子表現之影響。結果顯示,psrA 大量表現的菌株,1) 其合成綠膿菌素的前驅物 phenazine 相關之 phz 基因組的表現量較野生株高,綠膿菌素生成量亦較野生株多;2) 群體感應 AHL 訊號分子系統 (LasI/LasR-RhlI/RhlR) 之編碼基因的表現量較野生株低,且以紫色桿菌 CV026 測試細菌 AHL 的產量得知 psrA 大量表現菌株的 AHL 產量明顯較少;3) 受 LasR 正調控之群體感應 quinolone 訊號分子系統 (Pqs) 之編碼基因的表現量上升;4) 降解受質 (彈性蛋白、紅血球、酪蛋白) 的能力皆較野生株弱,且與降解受質蛋白相關的蛋白酶其編碼基因在 psrA 大量表現菌株中的表現量皆下降;5) 生成胞外多醣其中成份 Pel 的編碼基因之表現量上升,且透過剛果紅結合胞外多醣試驗可得知 psrA 大量表現之菌株分泌較多的胞外多醣。除此之外,我們利用 GUS 報導基因系統以了解 PsrA 調控的操縱子。結果顯示,除了已知 PsrA 會調控 rpoS 外,在本研究中我們證實了 PsrA 會調控群體感應 AHL 以及 quinolone 訊號分子系統,但並不會直接調控 phz 操縱子。綜合以上結果,PsrA 可能是透過調節群體感應系統而調節了綠膿菌素的生成量,以及透過調控群體感應系統而影響下游數種毒力因子的表現。本研究除了了解轉錄因子 PsrA 如何調控綠膿菌素的生成,亦提供 PsrA 調控網絡資訊,以全面了解 PsrA 對於綠膿桿菌的生理或致病能力之重要性。
Pseudomonas aeruginosa is a common pathogen that causes nosocomial infections. It can produce pyocyanin, a blue-green pigment, which is one of the major virulence factors in P. aeruginosa. The pigment is known to disrupt host cells by causing oxidative stress. The biosynthesis of pyocyanin is controlled by quorum sensing, which is also regulated by PsrA. PsrA is a transcriptional regulator in P. aeruginosa that regulates the expression of many physiological and virulent-related genes. The aim of this study is to investigate the mechanism of pyocyanin biosynthesis regulation via PsrA in P. aeruginosa. Initially a transcriptome analysis was used to compare the expression level of pyocyanin biosynthesis-related genes of wild-type PAO1 with that of psrA overexpression strain. In addition, the quantity of pyocyanin, quorum sensing autoinducer, exopolysaccharide, and hemolytic activity were determined in the wild-type, psrA overexpression and psrA deletion strains. The result showed that in psrA overexpression strain: 1) the expression of phz operon, responsible for pyocyanin synthesis, increased compared with that of the wild-type PAO1; 2) the expression of AHL quorum sensing system genes was reduced, and also less AHL autoinducer was produced than in wild-type PAO1; 3) the expression of quinolone quorum sensing system (Pqs)-related genes which was positively regulated by LasR was increased; 4) the activity of hydrolytic enzymes, including elastase, hemolysin, caseinase, were lower than wild-type PAO1, so was the expression of their encoding genes; 5) the expression of exopolysaccharide pel was increased and more exopolysaccharide production was observed. Moreover, the use of GUS reporter assay indicates that PsrA regulated AHL quorum sensing system and Pqs quorum sensing system, although PsrA seems to regulate the phz operon. Altogether, these findings contribute to comprehensive understanding of how PsrA regulates pyocyanin biosynthesis and the importance of PsrA on physiology and pathogenesis in P. aeruginosa.
1. Peix A, Ramirez-Bahena, M. H., Velazquez, E.: Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 2009, 9(6):1132-1147.
2. Reyes EA, Bale, M. J., Cannon, W. H., Matsen, J. M.: Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J Clin Microbiol 1981, 13(3):456-458.
3. Meyer JM: Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 2000, 174(3):135-142.
4. Holloway BW: Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 1955, 13(3):572-581.
5. Stover CK, Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K., Wu, Z., Paulsen, I. T., Reizer, J., Saier, M. H., Hancock, R. E., Lory, S., Olson, M. V.: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406(6799):959-964.
6. Shah SS, Gloor, P., Gallagher, P. G.: Bacteremia, meningitis, and brain abscesses in a hospitalized infant: complications of Pseudomonas aeruginosa conjunctivitis. J Perinatol 1999, 19(6 Pt 1):462-465.
7. Molina DN, Colon, M., Bermudez, R. H., Ramirez-Ronda, C. H.: Unusual presentation of Pseudomonas aeruginosa infections: a review. Bol Asoc Med P R 1991, 83(4):160-163.
8. Mena KD, Gerba, C. P.: Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol 2009, 201:71-115.
9. Levin AS, Barone, A. A., Penco, J., Santos, M. V., Marinho, I. S., Arruda, E. A., Manrique, E. I., Costa, S. F.: Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis 1999, 28(5):1008-1011.
10. Livermore DM: Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002, 34(5):634-640.
11. Donlan RM, Costerton, J. W.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002, 15(2):167-193.
12. Gellatly SL, Hancock, R. E.: Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013, 67(3):159-173.
13. Wick MJ, Hamood, A. N., Iglewski, B. H.: Analysis of the structure-function relationship of Pseudomonas aeruginosa exotoxin A. Mol Microbiol 1990, 4(4):527-535.
14. Hong YQ, Ghebrehiwet, B.: Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 1992, 62(2):133-138.
15. Van Delden C, Iglewski, B. H.: Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 1998, 4(4):551-560.
16. Kipnis E, Sawa, T., Wiener-Kronish, J.: Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 2006, 36(2):78-91.
17. Hauser AR: The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009, 7(9):654-665.
18. Shen DK, Filopon, D., Kuhn, L., Polack, B., Toussaint, B.: PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa. Infect Immun 2006, 74(2):1121-1129.
19. Jayaseelan S, Ramaswamy, D., Dharmaraj, S.: Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 2014, 30(4):1159-1168.
20. Waksman SA, Woodruff, H. B.: The Soil as a Source of Microorganisms Antagonistic to Disease-Producing Bacteria. J Bacteriol 1940, 40(4):581-600.
21. Baron SS, Rowe, J. J.: Antibiotic action of pyocyanin. Antimicrob Agents Chemother 1981, 20(6):814-820.
22. Kerr JR, Taylor, G. W., Rutman, A., Hoiby, N., Cole, P. J., Wilson, R.: Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 1999, 52(5):385-387.
23. Ray A, Rentas, C., Caldwell, G. A., Caldwell, K. A.: Phenazine derivatives cause proteotoxicity and stress in C. elegans. Neurosci Lett 2015, 584:23-27.
24. Lau GW, Ran, H., Kong, F., Hassett, D. J., Mavrodi, D.: Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 2004, 72(7):4275-4278.
25. Rada B, Leto, T. L.: Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol 2013, 21(2):73-81.
26. Pierson LS, 3rd, Gaffney, T., Lam, S., Gong, F.: Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett 1995, 134(2-3):299-307.
27. Mavrodi DV, Ksenzenko, V. N., Bonsall, R. F., Cook, R. J., Boronin, A. M., Thomashow, L. S.: A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 1998, 180(9):2541-2548.
28. Mavrodi DV, Peever, T. L., Mavrodi, O. V., Parejko, J. A., Raaijmakers, J. M., Lemanceau, P., Mazurier, S., Heide, L., Blankenfeldt, W., Weller, D. M., Thomashow, L. S.: Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 2010, 76(3):866-879.
29. Recinos DA, Sekedat, M. D., Hernandez, A., Cohen, T. S., Sakhtah, H., Prince, A. S., Price-Whelan, A., Dietrich, L. E.: Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A 2012, 109(47):19420-19425.
30. Greenhagen BT, Shi, K., Robinson, H., Gamage, S., Bera, A. K.,, Ladner JE, Parsons, J. F.: Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 2008, 47(19):5281-5289.
31. Mavrodi DV, Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G., Thomashow, L. S.: Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 2001, 183(21):6454-6465.
32. Schauder S, Bassler, B. L.: The languages of bacteria. Genes Dev 2001, 15(12):1468-1480.
33. Liang H, Li, L., Kong, W., Shen, L., Duan, K.: Identification of a novel regulator of the quorum-sensing systems in Pseudomonas aeruginosa. FEMS Microbiol Lett 2009, 293(2):196-204.
34. Jimenez PN, Koch, G., Thompson, J. A., Xavier, K. B., Cool, R. H., Quax, W. J.: The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2012, 76(1):46-65.
35. Smith RS, Iglewski, B. H.: P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 2003, 6(1):56-60.
36. Dietrich LE, Price-Whelan, A., Petersen, A., Whiteley, M., Newman, D. K.: The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 2006, 61(5):1308-1321.
37. Diggle SP, Crusz, S. A., Camara, M.: Quorum sensing. Curr Biol 2007, 17(21):R907-910.
38. Dubern JF, Diggle, S. P.: Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 2008, 4(9):882-888.
39. Deziel E, Lepine, F., Milot, S., He, J., Mindrinos, M. N., Tompkins, R. G., Rahme, L. G.: Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 2004, 101(5):1339-1344.
40. Coleman JP, Hudson, L. L., McKnight, S. L., Farrow, J. M., 3rd, Calfee, M. W., Lindsey, C. A., Pesci, E. C., : Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 2008, 190(4):1247-1255.
41. Lu J, Huang, X., Li, K., Li, S., Zhang, M., Wang, Y., Jiang, H., Xu, Y.: LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18. J Biotechnol 2009, 143(1):1-9.
42. Deziel E, Gopalan, S., Tampakaki, A. P., Lepine, F., Padfield, K. E., Saucier, M., , Xiao G, Rahme, L. G.: The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 2005, 55(4):998-1014.
43. Wade DS, Calfee, M. W., Rocha, E. R., Ling, E. A., Engstrom, E., Coleman, J. P., Pesci, E. C.: Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 2005, 187(13):4372-4380.
44. Kojic M, Venturi, V.: Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. J Bacteriol 2001, 183(12):3712-3720.
45. Kojic M, Aguilar, C., Venturi, V.: TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. J Bacteriol 2002, 184(8):2324-2330.
46. Kang Y, Nguyen, D. T., Son, M. S., Hoang, T. T.: The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology 2008, 154(Pt 6):1584-1598.
47. Kang Y, Lunin, V. V., Skarina, T., Savchenko, A., Schurr, M. J., Hoang, T. T.: The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Mol Microbiol 2009, 73(1):120-136.
48. Palumbo SA: Role of iron and sulfur in pigment and slime formation by Pseudomonas aeruginosa. J Bacteriol 1972, 111(2):430-436.
49. McClean KH, Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S., Williams, P.: Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997, 143 ( Pt 12):3703-3711.
50. Sokol PA, Ohman DE, Iglewski BH: A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa. J Clin Microbiol 1979, 9(4):538-540.
51. Yuan JS, Reed, A., Chen, F., Stewart, C. N., Jr.: Statistical analysis of real-time PCR data. BMC Bioinformatics 2006, 7:85.
52. Chatterjee A, Cui, Y., Hasegawa, H., Chatterjee, A. K.: PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. Appl Environ Microbiol 2007, 73(11):3684-3694.
53. Chin AWTF, van den Broek, D., Lugtenberg, B. J., Bloemberg, G. V.: The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 2005, 18(3):244-253.
54. Pyzh AE, Nikandrov, V. N.: [Contribution of blue-green pigments to hemolytic activity of Pseudomonas aeruginosa cultural fluid]. Zh Mikrobiol Epidemiol Immunobiol 2011(1):19-25.
55. Tsou AM, Zhu, J.: Quorum sensing negatively regulates hemolysin transcriptionally and posttranslationally in Vibrio cholerae. Infect Immun 2010, 78(1):461-467.
56. O'Malley YQ, Abdalla, M. Y., McCormick, M. L., Reszka, K. J., Denning, G. M., Britigan, B. E., : Subcellular localization of Pseudomonas pyocyanin cytotoxicity in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003, 284(2):L420-430.
57. Gooderham WJ, Bains, M., McPhee, J. B., Wiegand, I., Hancock, R. E.: Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. J Bacteriol 2008, 190(16):5624-5634.
58. Sakuragi Y, Kolter, R.: Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 2007, 189(14):5383-5386.
59. Girard G, Rigali, S.: Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis. Microbiology 2011, 157(Pt 2):398-407.
60. Cocotl-Yanez M, Sampieri, A., Moreno, S., Nunez, C., Castaneda, M., Segura, D., Espin, G.: Roles of RpoS and PsrA in cyst formation and alkylresorcinol synthesis in Azotobacter vinelandii. Microbiology 2011, 157(Pt 6):1685-1693.
61. Morkunas B, Galloway, W. R., Wright, M., Ibbeson, B. M., Hodgkinson, J. T., O'Connell, K. M., Bartolucci, N., Della Valle, M., Welch, M., Spring, D. R.: Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 2012, 10(42):8452-8464.
62. Morohoshi T, Wang, W. Z., Suto, T., Saito, Y., Ito, S., Someya, N., Ikeda, T.: Phenazine antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508. J Biosci Bioeng 2013, 116(5):580-584.
63. Zhang L, Gao, Q., Chen, W., Qin, H., Hengzhuang, W., Chen, Y., Yang, L., Zhang, G.: Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa. Microbiology 2013, 159(Pt 9):1931-1936.
64. Muller M, Merrett, N. D.: Mechanism for glutathione-mediated protection against the Pseudomonas aeruginosa redox toxin, pyocyanin. Chem Biol Interact 2015, 232:30-37.
65. Priyaja P, Jayesh, P., Philip, R., Bright Singh, I. S.: Pyocyanin induced in vitro oxidative damage and its toxicity level in human, fish and insect cell lines for its selective biological applications. Cytotechnology 2016, 68(1):143-155.
66. Forbes A, Davey, A. K., Perkins, A. V., Grant, G. D., McFarland, A. J., McDermott, C. M., Anoopkumar-Dukie, S.: ERK1/2 activation modulates pyocyanin-induced toxicity in A549 respiratory epithelial cells. Chem Biol Interact 2014, 208:58-63.
67. Shang Z, Wang, H., Zhou, S., Chu, W.: Characterization of N-Acyl-homoserine Lactones (AHLs)-Deficient Clinical Isolates of Pseudomonas aeruginosa. Indian J Microbiol 2014, 54(2):158-162.
68. Liu K, Wang, X., Sha, K., Zhang, F., Xiong, F., Wang, X., Chen, J., Li, J., Churilov, L. P., Chen, S., Wang, Y., Huang, N.: Nuclear protein HMGN2 attenuates pyocyanin-induced oxidative stress via Nrf2 signaling and inhibits Pseudomonas aeruginosa internalization in A549 cells. Free Radic Biol Med 2017, 108:404-417.
69. Xu X, Yu, H., Zhang, D.,, Xiong J, Qiu, J., Xin, R., He, X., Sheng, H.,, Cai W, Jiang, L., Zhang, K., Hu, X.,: Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation. Microbiol Res 2016, 192:84-95.
70. Herrmann KM, Weaver, L. M.: The Shikimate Pathway. Annu Rev Plant Physiol Plant Mol Biol 1999, 50:473-503.
71. Whitaker RJ, Fiske, M. J., Jensen, R. A.: Pseudomonas aeruginosa possesses two novel regulatory isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. J Biol Chem 1982, 257(21):12789-12794.