簡易檢索 / 詳目顯示

研究生: 陳育珊
Yu-Shan Chen
論文名稱: 以液相微萃取法配合多元素石墨爐原子吸收光譜儀測定海水中的鉛、銅、鋅元素
Liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase for the extraction of Pb(II), Cu(II) and Zn(II) in sea water
指導教授: 黃賢達
Shang-Da Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 77
中文關鍵詞: 液相微萃取法
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三液相動態微萃取法(dynamic three-phase microextraction, LLLME)結合多元素石墨爐原子吸收光譜偵測海水中的鉛、銅、鋅元素,利用有機相中的螯合劑(dithizone),螯合海水裡的重金屬,再反萃重金屬至受層(acceptor phase)硝酸中進行偵測,此方法不但簡便,分析時間也大大縮短。探討各種可能影響萃取效率的變因包括:有機溶劑的選擇、予層(donor phase)海水樣品和受層(acceptor phase)硝酸pH值、螯合劑用量、萃取時間與攪拌速率,在最佳化的條件下,鉛、銅、鋅的偵測極限分別為9.0*10-3μg/l,1.9*10-1μg/l,4.8*10-2μg/l;精密度為海水標準品NASS-5重複七次分析的相對標準偏差(RSDs%)表示之,本實驗鉛、銅、鋅的精密度為19.5%,18.9%,10.1%。
    本分析方法利用標準添加法來測定兩種不同標準海水CASS-4、NASS-5鉛、銅、鋅的含量,然而,其線性與定量結果並不理想,唯有定量標準海水CASS-4銅的線性(R2=0.9984)良好且定量結果可落在認證值的85~115%。


    A new method of dynamic three-phase microextraction (LLLME) combined with multi-element graphite furnance atomic absorption spectrometer (GFAAS) was proposed for the determination of trace Pb, Cu, and Zn in sea water. In a extraction step, three elements in 40 ml of sea water adjusted to basic condition (donor phase) were extracted into a organic film containing a chelating agent (dithizone) in o-xylene and then back-extracted into 10 μl of nitric acid solution (acceptor phase) for determination by GFAAS. Because the organic and acceptor phase were repeatedly moved in and out of the hollow fiber channel, the organic film is renewable, and the relative movement between the acceptor phase and the organic phase would enhance the enrichment factor. Under the optimized conditions, the detection limits were 9.0*10-3μg/l,1.9*10-1μg/l,4.8*10-2μg/l for lead, copper and zinc. The relative standard deviations (RSDs) were in the range of 10.1~19.5%. Two standard reference materials (CASS-4, NASS-5) were used to confirm the accuracy of the technique, however, the found values for most elements were not within 85~115% of certified values.

    目錄 第一章 緒論………………………………………………………………………… 1 1.1 前言……………………………………………………………………………1 1.2 海水重金屬污染物……………………………………………………………2 1.2.1 鉛(Pb)…………………………………………………………………2 1.2.2 銅(Cu)…………………………………………………………………4 1.2.3 鋅(Zn)…………………………………………………………………5 1.3 海水中微量重金屬元素分析……………………………………………………9 1.3.1 海水中微量重金屬量測的困難…………………………………………9 1.3.2 測量海水中重金屬儀器…………………………………………………9 1.3.3 前濃縮的方法………………………………………………………… 10 1.4 液相微萃取法………………………………………………………………… 13 1.4.1 單滴微萃取法………………………………………………………… 13 1.4.2 中空纖維液相微萃取法……………………………………………… 14 1.4.3 溶劑棒微萃取法……………………………………………………… 18 1.4.4 薄膜輔助溶劑萃取法………………………………………………… 20 1.5 多元素石墨爐原子吸收光譜儀……………………………………………… 21 1.6 論文研究方向………………………………………………………………… 25 第二章 實驗部分……………………………………………………………………26 2.1試藥…………………………………………………………………………… 26 2.2 儀器裝置……………………………………………………………………… 27 2.3藥品純化及器皿清洗………………………………………………………… 28 2.4 實驗步驟……………………………………………………………………… 28 第三章 結果與討論…………………………………………………………………30 3.1 螯合劑萃取體系……………………………………………………………… 30 3.2三液相動態微萃取法………………………………………………………… 31 3.3 最佳化條件探討……………………………………………………………… 33 3.3.1 最佳溫控程式的尋找………………………………………………… 33 3.3.2 萃取溶劑的選擇……………………………………………………… 34 3.3.3 予層(donor phase)海水樣品pH值的影響……………………………35 3.3.4 受層(acceptor phase)硝酸濃度的影響…………………………… 35 3.3.5 螯合劑的用量………………………………………………………… 36 3.3.6 萃取時間……………………………………………………………… 36 3.3.7樣品攪動程度………………………………………………………… 36 3.4 偵測極限、精密度與濃縮倍率……………………………………………… 37 3.5 海水分析……………………………………………………………………… 37 第四章 結論…………………………………………………………………………39 第五章 參考文獻……………………………………………………………………40 表目錄 表(一) 自然界河水、地下水、泉水、雨水、及海水中溶解態重金屬元素的濃度範圍(含污染及未受污染之水體)或是代表濃度…………………………47 表(二) 歷年來海水中重金屬得測值………………………………………………48 表(三) 側向加熱石墨爐與縱向加熱石墨爐原子吸收光譜儀原子化溫度比較…49 表(四) 數種商業化原子吸收光譜儀之比較………………………………………50 表(五) 儀器實驗參數………………………………………………………………51 表(六) 偵測極限、濃縮倍率、絕對回收率與精密度………………………………52 表(七) 最佳化條件下以標準添加法同時測定鉛、銅、鋅所得線性結果…………53 表(八) 海水分析……………………………………………………………………54 圖目錄 圖(一) 單滴微萃取法(drop-in-drop system)………………………………… 55 圖(二) 單滴微萃取法(solvent microextraction into a single drop)………56 圖(三) 單滴微萃取法………………………………………………………………57 圖(四) 單滴微萃取法(back extraction)……………………………………… 58 圖(五) 樣品連續流動式微萃取法…………………………………………………59 圖(六) 中空纖維液相微萃取法……………………………………………………60 圖(七) 液相微萃取法操作模式……………………………………………………61 圖(八) 兩液相微萃取法裝置圖……………………………………………………62 圖(九) 三液相微萃取法裝置圖……………………………………………………63 圖(十) 三液相動態微萃取法操作示意圖…………………………………………64 圖(十一) 溶劑棒微萃取法…………………………………………………………65 圖(十二) 薄膜輔助溶劑萃取………………………………………………………66 圖(十三) 二度空間光譜形成示意圖………………………………………………67 圖(十四) 光學系統設計……………………………………………………………68 圖(十五) 固態光電半導體偵測器與光電倍增管量子效率比較圖………………69 圖(十六) 側向加熱式石墨爐原子化氣加熱示意圖………………………………70 圖(十七) 三液相動態微萃取法示意圖……………………………………………71 圖(十八) 灰化溫度對原子吸收訊號的影響………………………………………72 圖(十九) 原子化溫度對原子吸收訊號的影響……………………………………73 圖(二十) 溶劑種類對萃取效率的影響……………………………………………74 圖(二十一) 海水樣品pH值對萃取效率的影響………………………………… 75 圖(二十二) 硝酸濃度對萃取效率的影響…………………………………………76 圖(二十三) 螯合劑用量對萃取效率的影響………………………………………77

    [1]潘致弘,鉛對健康危害預防手冊,行政院勞工委員會勞工安全衛生研究所,民國九十一年七月
    [2] Piscator, M. In Handbook on the Toxicology of Metals; Friberg, L., Nordberg, G.., Vouk, V. B. Eds; Elsevier/North-Holland: Amsterdam, 1979; Vol. 411.
    [3] Halloran, S. P. In Systemic Aspects of Biochemistry; Williams, D. F. Ed; CRC Press: Boca Raton, FL., 1981; Vol. 1, p211.
    [4]楊末雄,“環境污染物分析技術的探討” 科學發展月刊,第15卷第1期,民國七十六年一月,45-54
    [5] Crompton. T. R. Analysis of Sea-water; Butterworths: London, 1989; pp180–200.
    [6] Rao, T.; Metilda, P.; Gladis, J. “Overview of Analytical Methodologies for Sea Water Analysis: Part I—Metals” Crit. Rev. Anal. Chem. 2005, 35, 247-288.
    [7] Tyson J. F. “Flow Injection Atomic Spectrometry,” Spectrochim. Acta Rev. 1991, 14, 169-233
    [8] King, J. N.; Fritz, J. S. “Concentration of Metal Ions by Complexation with Sodium bis(2-hydroxyethyl)dithiocarbamate and Sorption on XAD-4 Resin” Anal. Chem. 1985, 57, 1016-1020.
    [9] Fang, Z.; Xu, S.; Tao, G. “Developments and Trends in Flow Injection Atomic Absorption Spectrometry” J. Anal. At. Spectrom. 1996, 11, 1-24.
    [10]白書禎,“當前海水中重金屬測定技術問題之檢討” 科學發展月刊,第13卷第2期,167-180
    [11] Strohal, P.; Molnarand, K.; Bai, I. “Preconcentration of Trace Elements by Aluminium Hydroxide” Mikrochimica Acta, 1972, 60, 586-590.
    [12] Kolthoff, I. M.; Moskovitz, B. “Studies on Coprecipitation and Aging. XI. Adsorption of Ammonio Copper Ion on and Coprecipitation with Hydrous Ferric Oxide. Aging of the Precipitate.” J. Phys. Chem. 1937, 41, 629-644.
    [13] Standard Methods for Examination of Water and Wastewater, 15th ed.; American Public Health Association: New York, 1981.
    [14] Sturgeon, R. E.; Willie, S. N.; Berman S. S. “Preconcentration of Selenium and Antimony from Seawater for Determination by Graphite Furnace Atomic Absorption Spectrometry” Anal. Chem.1985, 57, 6-9.
    [15] King, J. N.; Fritz, J. S. “Concentration of Metal Ions by Complexation with Sodium bis(2-hydroxyethyl)dithiocarbamate and Sorption on XAD-4 Resin” Anal. Chem. 1985, 57, 1016-1020.
    [16] Psillakis, E.; Kalogerakis, N. “Developments in Single-Drop Microextraction” Trends Anal. Chem. 2002, 21, 53-63.
    [17] Liu, H.; Dasgupta, P. K. “Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop” Anal. Chem. 1996, 68, 1817-1821.
    [18] Jeannot, M. A.; Cantwell, F. F. “Solvent Microextraction into a Single Drop” Anal. Chem. 1996, 68, 2236-2240.
    [19] Jeannot, M. A.; Cantwell, F. F. “Mass Transfer Characteristics of Solvent Extraction into a Single Drop at the Tip of a Syringe Needle” Anal. Chem. 1997, 69, 235-239.
    [20] Ma, M.; Cantwell, F. F. “Solvent Microextraction with Simultaneous Back-Extraction for Sample Cleanup and Preconcentration: Preconcentration into a Single Microdrop” Anal. Chem. 1999, 71, 388-393.
    [21] Liu, W.; Lee, H. K. “Continuous-Flow Microextraction Exceeding1000-Fold Concentration of Dilute Analytes” Anal. Chem. 2000, 72, 4462-4467.
    [22] Pedersen-Bjergaard, S.; Rasmussen, K. E. “Liquid-Liquid-Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis” Anal. Chem. 1999, 71, 2650-2656.
    [23] Psillakis, E.; Kalogerakis, N. “Developments in Liquid-Phase Microextraction” Trends Anal. Chem. 2003, 22, 565-574
    [24] Shen, G.; Lee, H. K. “Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides” Anal. Chem. 2002, 74, 648-654.
    [25] Hou, L.; Lee, H. K. “Dynamic Three-Phase Microextraction as a Sample Preparation Technique Prior to Capillary Electrophoresis” Anal. Chem. 2003, 75, 2784-2789.
    [26] Jiang, X.; Oh, S. Y.; Lee, H. K. “Dynamic Liquid-Liquid-Liquid Microextraction with Automated Movement of the Acceptor Phase” Anal. Chem. 2005, 77, 1689-1695.
    [27] Jiang, X.; Lee, H. K. “Solvent Bar Microextraction” Anal. Chem. 2004, 76, 5591-5596.
    [28] Schellin, M., Hauser, B., Popp, P. “Determination of Organophosphorus Pesticides Using Membrane-Assisted Solvent Extraction Combined with Large Volume Injection-Gas Chromatography-Mass Spectrometric Detection” J. Chromatogr., A 2004, 1040, 251-258.
    [29] Radziuk, B.; Rödel, G.; Stenz, H.; Becker-Ross, H.; Florek, S. “Spectrometer System for Simultaneous Multi-Element Electrothermal Using Line Sources and Zeeman-Effect Background” J. Anal. At. Spectrom. 1995, 10, 127.
    [30] Yasuda, K.; Okumoto, T.; Yonetani, A; Yamada H.; Ohishi, K. In Colloquium Atomspektrometrische Spurenanlytik; Welz, B. Ed; Perkin-Elemer GmbH: Uberlingen, 1989; Vol. 5, p133.
    [31] 葉榮泰, “同時多元素分析-石墨爐原子吸收光譜儀之設計原理與應用” 科儀新知,第 18 卷第 4 期,民國八十六年二月,50–58
    [32] Radziuk, B.; Rödel, G.; Zeiher, M.; Mizuno, S.; Yamamoto, K. “Solid-State Detector for Simultaneous Multi-Element Electrothermal Atomic Absorption Spectrometry with Zeeman-Effect Background Correction” J. Anal. At. Spectrom. 1995, 10, 415.
    [33] Karplus, M.; Poter, R. N. Atoms and Molecules, 2nd ed.; Mei-Ya INC, 1975.
    [34] Harnly, J. M. “Instrumentation for Simultaneous Multi-Element Atomic Absorption Spectrometry with Graphite Furnace Atomization” Fresenius J. Anal. Chem.1996, 355, 501-509.
    [35] Xia, L. B.; Hu, B.; Jiang, Z. C. “Single-drop microextraction combined with low-temperature electrothermal vaporization ICPMS for the determination of trace Be, Co, Pd, and Cd in biological samples” J. Anal. Chem.2004, 76, 2910-2915.
    [36] Xia, L. B.; Hu, B.; Jiang, Z. C. “8-Hydroxyquinoline-chloroform single drop microextraction and electrothermal vaporization ICP-MS for the fractionation of aluminium in natural waters and drinks” J. Anal. At. Spectrom. 2005, 20, 441-446.
    [37] Kiwan, A. M. “Use of Dichloromethane with Dithizone as an Alternative Solvent to Carbon Tetrachloride Restricted by Montreal Protocol” Talanta, 1997,44, 947-950.
    [38]Kim, Y. S.; Choi, Y. S.; In, K. “Studies on Equilibria and Analytical Applications of Synergistic Solvent Extraction(I). Determination of Trace Ni(II), Cd(II) and Pb(II) in Sea Water using Dithizone and Thiocyanate Ion” J. Kor. Anal. Sci. 2000, 21, 137-140.
    [39] Chen, C. C.; Melwanki, M. B.; Huang, S. D. “Liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase for the extraction of phenoxyacetic acids prior to liquid chromatography detection ” J. Chromatogr., A 2006, 1104, 33-39.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE