研究生: |
李政憲 Lee, Cheng Hsien |
---|---|
論文名稱: |
利用赤鐵礦改質之微濾膜移除模擬電廠廢水中之鈷核種之研究 REMOVAL OF COBALT NUCLIDES FROM SIMULATED NUCLEAR LIQUID WASTEWATER USING HEMATITE MODIFIED ULTRAFILTRATION MEMBRANES |
指導教授: |
王竹方
Wang, Chu Fung |
口試委員: |
蔣本基
Chiang, Pen Chi 談駿嵩 Tan, Chung Sung 王潔 Wang, Jane |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 微濾膜 、黏滯度 、Poiseuille Equation 、Gibbs-Donnan effect 、表面改質 |
外文關鍵詞: | ultrafiltration membrane, viscosity, Poiseuille Equation, Gibbs-Donnan effect, surface modification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微濾膜本身無法過濾離子等級的粒子,但是經由改質後可以有幾乎同等於奈濾膜的過濾效果。鑒於他人已發表的研究,我們知道薄膜的表面改質會在不同的情況下對水中離子產生單純吸附、斥力、吸引力三種影響,我們用在不同pH值改質的膜在不同pH值的含鈷溶液下做過濾,藉以了解他的通量、去除率。爾後我們使用Poiseuille Equation獲得各種不同pH值的含鈷溶液其黏滯度,藉以觀察電誘發的黏滯度對通量及去除率的影響。我們也使用BET及LA-ICP-MS的深度剖析來觀察改質後的孔徑大小及薄膜過濾之後鈷離子在膜上的吸附情形,最後我們研究綜合以上情形去了解電誘發的黏滯度及孔徑的大小與通量、去除率、黏滯度彼此之間的關係。
Ultrafiltration membrane can’t filtrate particles of ion level, but after modification it can reach the ability of rejection as high as the nanofiltration membrane. In view of the research publish by others I know there are three kind of effect will occur and had action to the ion in the solution when modifying membrane in different situation, respectively absorption, attractive force and repulsion. I use membrane modified in different pH and use different pH solution which has Co2+ to conduct our experiments by realizing the permeate flux and rejection. Later, I adopt Poiseuille Equation to gain the viscosities of different pH solution including Co2+ and furthermore to observe the effect of permeate flux and rejection caused by electroviscous with this equation. I also conduct BET and LA-ICP-MS depth profile to understand the pore size and the Co2+ absorption situation of membrane surface after filtration. Overall, our research base on the above to establish the relationships between electroviscous, pore size and permeate flux, rejection, viscosity.
[1] C. Labbez; P. Fievet; F. Thomas; A. Szymczyk; A. Vidonne; A. Foissy; P. Pagetti, “Evaluation of the “DSPM” model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability”, Journal of Colloid and Interface Science, 262, 200–211, 2003.
[2] Sz.S. Bucs, A.I. Radu, V. Lavric, J.S. Vrouwenvelder, C. Picioreanu, “Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study”, Desalination, 343, 26–37, 2014.
[3] Zahra Zourmand, Farzaneh Faridirad, Norollah Kasiri, Toraj Mohammadi, ‘Mass transfer modeling of desalination through an electrodialysis cell’, Desalination, 359, 41–51, 2015.
[4] Zhiwen Zhu, Li Zhu, Jianrong Li, Jianfeng Tang, Gang Li, Yi-Kong Hsieh, TsingHai Wang, Chu-Fang Wang, “Effect of interactions between Co2+ and surface goethite layer on the performance of α-FeOOH coated hollow fiber ceramic ultrafiltration membranes”, Journal of Colloid and Interface Science, 466, 28–35, 2016.
[5] Mustafa Koz, Satish G. Kandlikar, “Numerical investigation of interfacial transport resistance due to water droplets in proton exchange membrane fuel cell air channels", Journal of Power Sources, 243, 946–957, 2013.
[6] Frank Vinther, Manuel Pinelo, Morten Brons, Gunnar Jonsson, Anne S. Meyer, “Mathematical modelling of dextran filtration through hollow fibre membranes”, Separation and Purification Technology, 125, 21–36, 2014.
[7] D. Meg´ıas-Alguacil, J. D. G. Dur´an, and A. V. Delgado1, “Yield Stress of Concentrated Zirconia Suspensions: Correlation with Particle Interactions”, Journal of Colloid and Interface Science, 231, 74–83, 2000.
[8] Johan Schaep, Bart Van der Bruggen, Carlo Vandecasteele, Dirk Wilms, “Influence of ion size and charge in nanofiltration”, Separation and Purification Technology, 14, 155–162, 1998.
[9] Byung-Sik Lee, “Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste”, Nuclear Engineering and Technology, 47, 859–866, 2015.
[10] R. Levenstein, D. Hasson , R. Semiat, “Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membrane”, Journal of Membrane Science, 116, 77-92, 1996.
[11] Johanna Buchert, Tarja Tamminen, Liisa Viikari, “Impact of the Donnan effect on the action of xylanases on fibre substrates”, Journal of Biotechnology, 57, 217-222, 1997.
[12] Luis Cumbal, Arup K. SenGupta, “Arsenic Removal Using Polymer-Supported Hydrated Iron(III) Oxide Nanoparticles: Role of Donnan Membrane Effec”, Environ. Sci. Technol, 39, 6508–6515, 2005.
[13] Xiao-Lin Wang, Toshinori Tsuru, Shin-ichi Nakao, Shoji Kimura, “The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes”, Journal of Membrane Science, 19-32, 1997.
[14] N.Hilal, H. Al-Zoubi, N.A. Darwish, A.W. Mohamma, M. Abu Arabi, “A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy”, Desalination, 170, 281-308, 2004.
[15] R. Rautenbach, A. Gröschl, “Nanofiltration membranes broaden the use of membrane separation technology”, Desalination, 77, 73-84, 1990.
[16] J.M.K. Timmer, M.P.J. Speelmans, H.C. van der Horst, “Separation of amino acids by nanofiltration and ultrafiltration membranes”, Separation and Purification Technology, 14, 133–144, 1998.
[17] B. Chaufer, M. Rabiller-Baudry, L. Guihard, G. Daufin, “Retention of ions in nanofiltration at various ionic strength”, Desalination, 104, 37-46, 1996.
[18] NoHwa Lee, Gary Amy, Jean-Philippe Croué, Herve Buisson, “Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM)”, Water Research, 38, 4511–4523, 2004.
[19] Mathias Ulbricht, Georges Belfort, “Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone”, Journal of Membrane Science, 111, 193-215, 1996.
[20] Nidal Hilal, Oluwaseun O. Ogunbiyi, Nick J. Miles & Rinat Nigmatullin, “Methods Employed for Control of Fouling in MF and UF Membranes: A Comprehensive Review”, Separation Science and Technology, 40, 2005.
[21] David Linton Johnson, Joel Koplik, and Lawrence M. Schwartz, “New Pore-Size Parameter Characterizing Transport in Porous Media”, Phys. Rev. Lett, 57, 2564, 1986.
[22] M. Malik and J. Letey, “Pore-Size-Dependent Apparent Viscosity for Organic Solutes in Saturated Porous Media”, SSSAJ, 56, 1032-1035, 1991.
[23] J Phattaranawik, R Jiraratananon, A.G Fane, “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, Journal of Membrane Science, 215, 75–85, 2003.
[24] Peter DePhillips, Abraham M. Lenhoff, “Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography”, Journal of Chromatography A, 883, 39–54, 2000.
[25] W.Richard Bowen, W.Richard Bowen, “Modelling of membrane nanofiltration—pore size distribution effects”, Chemical Engineering Science, 57, 1393–1407, 2000.
[26] R.M Pashley, “DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties”, Journal of Colloid and Interface Science, 83, 531-546, 1981.
[27] M. Boström, D. R. M. Williams, and B. W. Ninham, “Specific Ion Effects: Why DLVO Theory Fails for Biology and Colloid Systems”, Phys. Rev. Lett, 87, 168103, 2001.
[28] Subir Bhattacharjee, Menachem Elimelech, “Surface Element Integration: A Novel Technique for Evaluation of DLVO Interaction between a Particle and a Flat Plate”, Journal of Colloid and Interface Science, 193, 273-285, 1997.
[29] Nathalie Tufenkji and Menachem Elimelech, Langmuir, “Deviation from the Classical Colloid Filtration Theory in the Presence of Repulsive DLVO Interactions”, Langmuir, 20, 10818–10828, 2004.
[30] Menachem Elimelech , Masahiko Nagai , Chun-Han Ko , and Joseph N. Ryan , “Relative Insignificance of Mineral Grain Zeta Potential to Colloid Transport in Geochemically Heterogeneous Porous Media”, Environmental Science Technology, 34, 2143–2148, 2000.
[31] Zbigniew Adamczyk, Paweł Weroński, “Application of the DLVO theory for particle deposition problems”, Advances in Colloid and Interface Science, 83, 137–226, 1999.
[32] Saeed Torkzaban, Scott A. Bradford and Sharon L. Walker, Langmuir, “Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media”, Langmuir, 23, 9652–9660, 2007.
[33] Hiroki Yotsumoto, Roe-Hoan Yoon, “Application of Extended DLVO Theory: I. Stability of Rutile Suspensions”, Journal of Colloid and Interface Science, 157, 434-441, 1993.
[34] Ning Hsing Chen, Ind. Eng. Chem. Fundamen., “An explicit equation for friction factor in pipe”, 18, 296–297, 1979.
[35] Ann M. Lewis and Emery R. Boose, “Estimating Volume Flow Rates Through Xylem Conduits”, American Journal of Botany, 82, 1112-1116, 1995.
[36] Richard C. Penwell, Roger S. Porter, Stanley Middleman, “Determination of the pressure coefficient and pressure effects in capillary flow”, Journal of Polymer Science, 9, 731–745, 1979.
[37] C. E. Neuzil, James V. Tracy, “Flow through fractures”, Earth and Space Science, 17, 191–199, 1981.
[38] Lu Yana, Yu Shui Li, Chai Bao Xiang, “Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research, Polymer”, 46, 7701–7706, 2005.
[39] K. K. Sun-Tak Hwang, “Membranes in Seperations”. 1974.
[40] H. El-Saied, A. H. Basta, B. N. Barsoum, and M. M. Elberry, “Cellulose membranes for reverse osmosis Part I. RO cellulose acetate membranes including a composite with polypropylene”, Desalination, 159, 171-181, 2003.
[41] R. W. Baker, "Membrane Technology and Applications. 2nd ed”, 2004.
[42] M. Barger and R. Carnahan, “Fouling prediction in reverse osmosis processes”, Desalination, 83, 3-33, 1991.
[43] S. Gligorovski, J. T. Van Elteren, and I. Grgić, “A multi-element mapping approach for size-segregated atmospheric particles using laser ablation ICP-MS combined with image analysis”, Science of the Total Environment, 407, 594-602, 2008.
[44] ] M. V. Zoriy, M. Dehnhardt, A. Matusch, and J. S. Becker, “Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry”, Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 375-382, 2008.
[45] E. Hoffmann, C. Lüdke, J. Skole, H. Stephanowitz, E. Ullrich, and D. Colditz, “Spatial determination of elements in green leaves of oak trees (Quercus robur) by laser ablation-ICP-MS”, Fresenius' journal of analytical chemistry, 367, 579-585, 2000.
[46] C. Giesen, T. Mairinger, L. Khoury, L. Waentig, N. Jakubowski, and U. Panne, “Multiplexed immunohistochemical detection of tumor markers in breast cancer tissue using laser ablation inductively coupled plasma mass spectrometry”, Analytical chemistry, 83, 8177-8183, 2011.
[47] ]J. J. Gonzalez, A. Fernández, X. Mao, and R. E. Russo, “Scanning vs. single spot laser ablation (< i> λ</i>= 213 nm) inductively coupled plasma mass spectrometry”, Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 369-374, 2004.
[48] A. B. Moradi, S. Swoboda, B. Robinson, T. Prohaska, A. Kaestner, S. E. Oswald, et al., “Mapping of nickel in root cross-sections of the hyperaccumulator plant< i> Berkheya coddii</i> using laser ablation ICP-MS”, Environmental and experimental botany, 69, 24-31, 2010.
[49] B. Wagner, S. Garboś, E. Bulska, and A. Hulanicki, “Determination of iron and copper in old manuscripts by slurry sampling graphite furnace atomic absorption spectrometry and laser ablation inductively coupled plasma mass spectrometry”, Spectrochimica Acta Part B: Atomic Spectroscopy, 54, 797-804, 1999.
[50] A. Kindness, C. N. Sekaran, and J. Feldmann, “Two-dimensional mapping of copper and zinc in liver sections by laser ablation–inductively coupled plasma mass spectrometry”, Clinical chemistry, 49, 1916-1923, 2003.
[51] L.-S. Chen, T. Wang, Y.-K. Hsieh, C.-H. Hsu, J. C.-T. Lin, and C.-F. Wang, “Visualization of clogs developed from interaction between APDC and low-level radwaste relevant nuclides on RO membranes: A LA-ICP-MS study”, Journal of Membrane Science, 456, 202-208, 2014.
[52] G. Sarah, B. Gratuze, and J.-N. Barrandon, “Application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the investigation of ancient silver coins”, Journal of Analytical Atomic Spectrometry, 22, 1163-1167, 2007.
[53] [137] S. Eggins, L. Kinsley, and J. Shelley, “Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS”, Applied Surface Science, 127, 278-286, 1998.
[54] [138] J. Pisonero, J. Koch, M. Wälle, W. Hartung, N. Spencer, and D. Günther, “Capabilities of femtosecond laser ablation inductively coupled plasma mass spectrometry for depth profiling of thin metal coatings”, Analytical chemistry, 79, 2325-2333, 2007.
[55] [139] M. P. Mateo, C. C. Garcia, and R. Hergenröder, “Depth analysis of polymer-coated steel samples using near-infrared femtosecond laser ablation inductively coupled plasma mass spectrometry”, Analytical chemistry, 79, 4908-4914, 2007.
[56] [140] P. R. Mason and A. J. Mank, “Depth-resolved analysis in multi-layered glass and metal materials using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)”, Journal of Analytical Atomic Spectrometry, 16, 1381-1388, 2001.
[57] [141] A. J. Mank and P. R. Mason, “A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples”, Journal of Analytical Atomic Spectrometry, 14, 1143-1153, 1999.
[58] A. L. Hobbs and J. R. Almirall, “Trace elemental analysis of automotive paints by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS)”, Analytical and bioanalytical chemistry, 376, 1265-1271, 2003.
[59] L. A. Friedrich and N. M. Halden, “Alkali element uptake in otoliths: a link between the environment and otolith microchemistry”, Environmental science & technology, 42, 3514-3518, 2008.
[60] L. A. Friedrich and N. M. Halden, “Determining exposure history of northern pike and walleye to tailings effluence using trace metal uptake in otoliths”, Environmental science & technology, 44, 1551-1558, 2010.
[61] L. A. Friedrich and N. M. Halden, “Laser ablation inductively coupled plasma mass spectrometric analyses of base metals in Arctic char (Salvelinus alpinus) otoliths collected from a flooded base metal mine”, Environmental science & technology, 45, 4256-4261, 2011.
[62] V. P. Palace, N. M. Halden, P. Yang, R. E. Evans, and G. Sterling, “Determining residence patterns of rainbow trout using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of selenium in otoliths”, Environmental science & technology, 41, 3679-3683, 2007.
[63] S. Gligorovski, J. T. Van Elteren, and I. Grgić, “A multi-element mapping approach for size-segregated atmospheric particles using laser ablation ICP-MS combined with image analysis”, Science of the Total Environment, 407, 594-602, 2008.
[64] T. Okuda, J. Kato, J. Mori, M. Tenmoku, Y. Suda, S. Tanaka, et al., “Daily concentrations of trace metals in aerosols in Beijing, China, determined by using inductively coupled plasma mass spectrometry equipped with laser ablation analysis, and source identification of aerosols”, Science of the Total Environment, 330, 145-158, 2004.
[65] Y.-K. Hsieh, L.-K. Chen, H.-F. Hsieh, C.-H. Huang, and C.-F. Wang, “Elemental analysis of airborne particulate matter using an electrical low-pressure impactor and laser ablation/inductively coupled plasma mass spectrometry”, Journal of Analytical Atomic Spectrometry, 26, 1502-1508, 2011.
[66] H.-F. Hsieh, W.-S. Chang, Y.-K. Hsieh, and C.-F. Wang, “Lead determination in whole blood by laser ablation coupledwith inductively coupled plasma mass spectrometry”, Talanta, 79, 183-188, 2009.
[67] U. Krause-Buchholz, J. S. Becker, M. Zoriy, C. Pickhardt, M. Przybylski, G. Rödel, et al., “Detection of phosphorylated subunits by combined LA–ICP–MS and MALDI–FTICR–MS analysis in yeast mitochondrial membrane complexes separated by blue native/SDS-PAGE”, International Journal of Mass Spectrometry, 248, 56-60, 2006.
[68] L. Dussubieux, P. Robertshaw, and M. D. Glascock, “LA-ICP-MS analysis of African glass beads: Laboratory inter-comparison with an emphasis on the impact of corrosion on data interpretation”, International Journal of Mass Spectrometry, 284, 152-161, 2009.
[69] J. M. Gallo and J. R. Almirall, “Elemental analysis of white cotton fiber evidence using solution ICP-MS and laser ablation ICP-MS (LA-ICP-MS)”, Forensic science international, 190, 52-57, 2009.
[70] I. Rodushkin and M. D. Axelsson, “Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part III. Direct analysis by laser ablation”, Science of the total environment, 305, 23-39, 2003.
[71] B. G. Rusk, M. H. Reed, J. H. Dilles, L. M. Klemm, and C. A. Heinrich, “Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT”, Chemical Geology, 210, 173-199, 2004.
[72] Z. Pan, W. Wei, and F. Li, “LA ICP-MS in microelectronics failure analysis”, Journal of Materials Science: Materials in Electronics, 22, 1594-1601, 2011.
[73] S. Gruhl, C. Vogt, J. Vogt, U. Hotje, and M. Binnewies, “Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) of ZnS 1− x Se x Semiconductor Materials”, Microchimica Acta, 149, 43-48, 2005.
[74] Beatriz Fernández, Fanny Claverie, Christophe Pécheyran, Olivier F.X. Donard,Fanny Claverie, “Direct analysis of solid samples by fs-LA-ICP-MS”, TrAC Trends in Analytical Chemistry, 26, 951–966, 2007.