簡易檢索 / 詳目顯示

研究生: 牛慈伶
Tzu-ling Niu
論文名稱: 有機/無機添加矽酸鈣生醫用混凝土之開發與應用研究
Development and application of biomedical concrete with organic/inorganic additives
指導教授: 金重勳
Tsung-Shune Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 97
中文關鍵詞: 三鈣矽酸鹽生醫用混凝土氫氧基磷灰石三鈣磷酸鹽膠原蛋白海藻酸鈉老鼠纖維母細胞株紐西蘭大白兔
外文關鍵詞: Tricalcium silicate, bioconcrete, HAp, -TCP, collagen, alginate, L929, Newland white rabbits
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業用的混凝土主要為由水、水泥及粒料(如:砂及小碎石等)組成的混合物。而本實驗研究目的即製備醫藥級的人工混凝土,應用於修復骨頭缺陷。
    本實驗生醫用混凝土設計方面,以Zn0.075Ca2.925SiO5、氫氧基磷灰石( HAp )及□-三鈣磷酸鹽( □-TCP )分別替代水泥、砂及小碎石的角色。Zn0.075Ca2.925SiO5由試藥級的CaCO3、SiO2 及ZnO於1400 oC經固態反應煆燒製備,將所得的Zn0.075Ca2.925SiO5粉末再利用高速球磨細化使粒徑達10 □m以下,並以10 wt% NaH2PO4 溶液為連結劑進一步混合其它無機成份HAp及□-TCP。此外,添加生物用膠原蛋白( Collagen )及海藻酸鈉( Alginate )改善其生物相容性。此生醫混凝土無機成份比例選用Zn0.075Ca2.925SiO5 : HAp: □-TCP為1: 2: 4,並添加collgen及alginate各1 wt% (簡稱: G1)。此材料成分具有適當的操作性質、工作及固化時間,分別為11及90分鐘,且平均壓縮強度達30~40 MPa。並以純Zn0.075Ca2.925SiO5添加同G1含量高分子作為對照組(簡稱: O1)做深入研究。
    生物性質測試方面,使用老鼠纖維母細胞( L929 )進行體外細胞實驗。細胞毒性測試方面,G1相對於O1顯示優越的生物相容性,且可刺激細胞分裂成長。在動物實驗方面,由一個月的骨頭外觀照片顯示G1具有不錯的骨骼修補能力。綜合上述生物實驗結果,皆顯示G1為一具有良好生物相容性的生醫混凝土材料,可用於骨骼填補。


    Technological concrete is a construction material commonly composed of water, cement and aggregate such as sand and gravel . The purpose of this study is to fabricate biomedical concrete for bone defect repair.
    In this research, the roles of the cement, sand and gravel are respectivly Zn0.075Ca2.925SiO5, hydroxylapatite( HAp ) and□□-tricalcium phosphate (□-TCP). Zn doped tricalcium silicate powders (Zn0.075Ca2.925SiO5) are prepared by calcining reagent-grade CaCO3, SiO2 and ZnO at 1400 oC through the solid-state reaction. And then the Zn0.075Ca2.925SiO5 powders are milled by high-energy ball milling to lower the particle size under 10 □m. 10 wt% NaH2PO4 used as binder, furthermore, biological polymers, collagen and alginate, are added to improve the bio-compatibility of the biomedical concrete. The inorganic component ratio of the biomedical concrete is 1 : 2 : 4, and organic additives were 1 wt% collagen and 1 wt% alginate (named : G1). The biomedical concrete mixed with NaH2PO4 solution has proper 11 minutes working time and 90 minutes setting time. The compressive strength of the biomedical concrete is averagely 30~40 MPa. Pure Zn0.075Ca2.925SiO5 added with the same polymer content is prepared and serving as relative ( named : O1). G1 and O1 are further studied.
    Mice fibroblast cell line ( L929 ) is cultured for in vitro test. In the cytotoxicity tests, G1 shows excellent bio-compatibility comparing to O1. In addition, for Animal test for Newland white rabbits in vivo, G1 shows good repairing ability.

    中文摘要………………………………………………………………Ι 總目錄…………………………………………………………………V 圖目錄………………………………………………………………...VΙΙΙ表目錄…………………………………………………………………X 第一章 前言…………………………………………………………… 1 1-1 研究動機………………………………………………………… 1 1-2 研究目的………………………………………………………… 3 第二章 文獻及理論回顧……………………………………………… 4 2-1骨科植入材料特性………………………………………………. 4 2-1-1生醫材料簡介………………………………………………4 2-1-2 骨水泥的發展、種類及應用………………………………7 2-2 生醫用混凝土的成分特性………………………….………… 11 2-2-1 無機成份-雙相磷酸鈣材料及三鈣矽酸鹽.………………11 2-3-2有機成分-膠原蛋白及海藻酸鈉…………………………15 2-3 煆燒、燒結及混凝土強度………………………………………19 2-3-1 煆燒與燒結原理…………………………………………...19 2-3-2 影響混凝土的強度因素…………………………………..20 2-4 體外生物相容性試驗……………………………...……………22 2-4-1 人工模擬體液……………………………………………...22 2-4-2 MTT測試…………………………………………………....25 第三章 實驗方法………………………………………………………27 3-1 材料準備………………………………………………………28 3-1-1製備ZnxCa3-xSiO5及生醫混凝土之材料準備…………….28 3-1-2 細胞貼附及毒性測試之材料備…………………………...30 3-1-3 動物實驗之材料準備...........................................................32 3-2製備微米ZnxCa3-xSiO5粉末…………………………………34 3-3 混凝土的操作、表面形貌結構及強度分析……………………35 3-3-1 工作、操作時間及pH值變化的量測……………………...35 3-3-2 X光繞射儀………………………………………………….36 3-3-3 場發式電子顯微鏡………………………………………37 3-3-4 萬能壓縮測試機…………………………………..……….38 3-4細胞生物相容性測試( in vitro )…………………………………39 3-4-1膠原蛋白去免疫端的製程…………………………………39 3-4-2 L929細胞貼附骨水泥表面形貌之實驗……………………40 3-4-3 不同天數骨水泥離子釋出對L929細胞毒性測試法..........41 3-5 動物實驗( in vivo ).......................................................................43 第四章 結果與討論……………………………………………………45 4-1選擇ZnxCa3-xSiO5粉體中之Zn摻雜量…………………………45 4-1-1不同的Zn摻雜量對煆燒後ZnxCa3-xSiO5粉體的影響……45 4-1-2 不同的冷卻方式對Zn0.075Ca2.925SiO5粉體的影響………...49 4-2 細化ZnxCa3-xSiO5及□-TCP、HAp粒徑大小評估………………51 4-2-1球磨Zn0.075Ca2.925SiO5參數及粒徑大小................................51 4-2-2 TCP、HAp粒徑大小分析…………………………………...54 4-3 生醫混凝土成份選擇…………………………………………...56 4-3-1不同無機成分比例選擇與性質…………………………….56 4-3-2 添加膠原蛋白之含量選擇與性質分析…………….……58 4-3-3 添加海藻酸鈉之含量選擇與性質分析……….......………61 4-4 生醫混凝土的性質分析……………………………………...…62 4-4-1 生醫混凝土養護於飽和水蒸汽之水合性質分析….......…62 4-4-2 生醫混凝土的pH值變化及壓縮強度分析……………….66 4-4-3 生醫混凝土浸泡於SBF中性質分析……………………...71 4-4-4 生醫混凝土模擬體內植入情形…………………...………75 4-5 老鼠纖維母細胞L929生物相容性測試……………………….77 4-5-1 表面貼附測試……….…………………...…..…………….77 4-5-2 材料短期浸泡於培養液對於L929細胞毒性分析………..81 4-5-3材料長期浸泡於SBF對於L929細胞毒性分析及離子釋出 情形………………………………………………………....82 4-6 紐西蘭大白兔體內動物實驗…………………………………...86 4-6-1 血液檢查評估……….…………………...…..…………….86 4-6-2 骨頭照片評估…………………………………...………..89 第五章 結論……………………………………………………………91 第六章 參考文獻………………………………………………………93

    1. 周森,複合材料-奈米、生物科技,全威圖書有限公司,2002。
    2. M. J. Dalby, L.D.S., E. J. Harper, W. Bonfield, “In vitro evalution of a new polymethylmethacrylate cement reforced with hydroxyapatite”, Journal of materials science: materials in medicine, 10, pp. 793-796, 1999.
    3. Hua Liu, H.L., Wenjun Cheng, Yuan Yang, Minying Zhu, Changren Zhou, ”Novel injectable calcium phosphate/chitosan composites for bone substitute materials”, Acta Biomaterialia, 2, pp.557~565, 2006.
    4. Reffitt DM, O.N., Jygdaohsingh R., “Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentitation in human osteoblast-like cells in vitro”, Bone, 32, 2003.
    5. I. Fernandez Olmo, E. Chacon and A. Irabien: Cement Concrete Research, 31, pp.1213, 2001.
    6. Chung RJ, C.T., Huang CW, Lin PC, Key Engineering Materials, 2003.
    7. Schweitzer JS, Livingston RA, Rolfs C, Becker HW, Kubsky S, “Ion beam analysis of the hydration of tricalcium silicate”, Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials and Atoms , 207, pp.80~84, 2003.
    8. Zhiguang Huan, Jiang Chang, “Novel Tricalcium Silicate/Monocalcium Phosphate Monohydrate Composite Bone Cement”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 82B, pp.352~359, 2007.
    9. Wahl D. A., Czernuszka J. T., “Collagen-hydroxyapatite composites for hard tissue repair”, EUROPEAN CELL&MATERIALS, pp.43~56, 2006.
    10. Jeanie L. Drury, Robert G. Dennis, David J. Mooney, ”The tensile properties of alginate hydrogels”, Biomaterials, pp.3187~3199, 2004.
    11. Mark P. Staigera, Alexis M. Pietaka, Jerawala Huadmaia,George Diasb, “Magnesium and its alloys as orthopedic biomaterials:A review”, Biomaterials, 27, pp.1728~1734, 2006.
    12. 洪敏雄,林峰輝,王盈錦,生醫陶瓷之陶瓷技術手冊(上)(下),中華民國產業科技發展協會,1994。
    13. S. M. Kenny, M.B., “Bone cement and fillers: A review”, Journal of materials science : materials in medicine, 14, pp.923~938, 2003.
    14. Karen J. L. Burg, Scott Porter, James F. Kellam, ”Biomaterial development for bone tossue engineering”, Biomaterials, 21, pp.2347~2359, 2000.
    15. Hockin H.K. Xu, M.D.W., Elena F. Burguera, Alexis M. Fraser, “Injectable and macroporous calcium phosphate cement scaffold”, Biomaterials, 27, pp. 4279~4287, 2006.
    16. C. C. Ribeiro, C. C. Barrias, M. A. Barbosa, “Preparation and characterization of calcium-phosphate porous microspheres with a uniform size for biomedical applications”, Journal of Materials Science : Materials in Medicine., 17, pp.455~463, 2006.
    17. Zhiguang Huan, Jiang Chang, “Self-setting properties and in vitro bioactivity of calcium sulfate hemilhydrate-tricalcium silicate composite bone cements”, Acta Biomaterlaia, 3, pp.952~960, 2007.
    18. Giovanna Gomez d’Ayala, Alfredo De Rosa, Paola Laurienzo, Mario Malinconico, ”Development of a new calcium sulphats-based composite using alginate and chemically modified chitosan for bone regeneration”, Journal of Biomedical Materials Research, 81A, pp.811~820, 2007.
    19. 李玉寶,顧寧,魏于全,張勁燕,奈米生醫材料。
    20. R. Narayanan, S.K.S., T.Y. Kwon and K.H. Kim, “Electrochemical nano-grained calcium phosphate coatings on Ti–6Al–4V for biomaterial applications”, Scripta Materialia, 56, pp. 22~232, 2007.
    21. LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D&Legeros, J. P., “Biphasic calcium phosphate bioceramics: preparation,properties and application”, Journal of Materials Sciences: Materials in medicine, 14, pp. 210-209, 2003.
    22. 黃國昌,金重勳,雙相鄰酸鈣骨填充材料與其生物效應評估,. 國立清華大學碩士論文,民國九十四年。
    23. Johnna S. Temeno, Antonios G. Mikos, “Injectable biodegradable materials for orthopedic tissue engineering”, Biomaterials, 21, pp.2405~2412, 2000.
    24. Simon Storgard Jensen, A.Y., Michel Dard, Ernst Hunziker, Robert Schenk, Daniel Buser, “Evaluation of a novel biphasic calcium phosphate in standardized bone defects”, Clinical Oral Implants Research, 18, pp.752-760, 2007.
    25. 王坤應,施並裕,低溫合成矽酸鈣粉體,2003國立聯合大學碩士論文。
    26. 曾博榆,王鯤生,都市垃圾焚化灰渣調質熔渣取代部份水泥之研究,國立中央大學碩士論文,民國九十一年。
    27. Wayne M. Becker, Lewis J. Kleinsmith, Jeff Hardin, “The World of the Cell” , Benjamin Cummings, 6 edition, 2006.
    28. Li-Juan Zhang, Xu-Sheng Feng, Hong-Guo Liu, Dong-Jin Qian, Li Zhang, Xi-Ling, Fu-Zhai Cui, ”Hydroxylapatite/collagen composite materials formation in stimulated body fluid environment”, Materials Letters, 58, 719~722, 2004.
    29. A. Tampieri, M. Sandri, E. Landi, G. Celotti, N. Roveri, M. Mattioli-Belmonte, L. Virgili, G. Biagini, “HA/alginate hydri composite prepared through bio-inspired nucleation”, Acta Biomaterialla, 1, pp.343~351, 2005.
    30. Schauer, M.D.C.a.C.L., “Structurally Colored Thin Films of Ca2+-Cross-Linked Alginate”, Biomacromolecules, 8, pp.33, 2007.
    31. P. V. Finotelli, M. A. Morales, M. H. Rocha-Leao, E. M. Baggio-Saitovitch, A. M. Rossi, ”Magnetic studies of iron(ΙΙΙ) nanoparticles in alginate polymer for drug delivery applications”, Materials science and engineering C, 24, pp.625~629, 2004.
    32. Rungnaphar Pongsawatmanit, Thepkunya Harnsilawat, David J. McClements, ”Influence of alginate, PH and ultrasound treatment on palm oil-in-water emulsions stabilized by β-lactoglobulin”, Colloids and Surfaces A-Physicochemical and Engineering Aspects , 287, pp.59~67, 2006.
    33. Shuhua Teng , J.S., Bixian Peng , Lijuan Chen, “The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites”, Composites Science and Technology, 66, pp.1532-1538, 2006.
    34. 陸志鴻,工程材料學,正中出版,1972年。
    35. Tadashi Kokubo, H.T., “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials, 27, pp.2907~2915, 2006.
    36. S. M. Zhang, F. Z. Cui, S. S. Liao, Y. Zhu, L. Han, ”synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite”, Journal of materials science: materials in medicine, 14, pp.641~645, 2003.
    37. Valera Cosantino, M.D.E., Ernesto Fattorusso, Alfonso Mangoni, Nicoletta Basilico, Silvia Parapini, Donatella Taramelli, “Damicoside from Axinella damicornis:The Influence of a Glycosylated Galactose 4-OH Group on the Immunostimulatory Activity of α-Galactoglycosphingolipids”, Journal of Medicinal Chemistry, 48, pp. 7411~7417, 2005.
    38. B. D. Cullity, S. R. Stock, “Element of X-ray diffraction”, third edition, Prentice Hall.
    39. 牛曰舜,金重勳,鋅取代鈣矽酸鹽之新式骨水泥研究,國立清華大學碩士論文,民國九十六年。
    40. 林昭元,金重勳,鈣矽酸骨水泥的機械性質與水合機制研究,國立清華大學碩士論文,民國九十三年。
    41. G. Daculsi, ”Biotechnology for Calcium Phosphate Bioactive Ceramics in Bone Repair, the Chinese society for materials”, 1999 annual meeting workshop.
    42. 曾秋隆,曾氏獸醫血液學,藝軒圖書出版社,2005。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE