研究生: |
黃志皓 Huang, Chih-Hao |
---|---|
論文名稱: |
發展二極體汲發摻鐿氟化鈣再生放大器 Development of Diode-pumped Yb:CaF2 Regenerative Amplifier |
指導教授: |
林明緯
Lin, Ming-Wei |
口試委員: |
陳明彰
Chen, Ming-Chang 陳燦耀 Chen, Tsan-Yao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 再生放大器 、摻鐿氟化鈣晶體 、二極體汲發 |
外文關鍵詞: | Regenerative Amplifier, Yb:CaF2 crystal, Diode-pumped |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要包含高功率超短脈衝再生放大器(regenerative amplifier)的設計與架設。此高功率超短脈衝再生放大器系統為一個啁啾脈衝放大(Chirped pulse amplification, CPA)系統,其中包含了脈衝延展器(pulse stretcher)、再生放大器與脈衝壓縮器(pulse compressor),而再生放大器又分為兩級,以獲得更多的輸出能量。
為了避免增益介質會因被放大後雷射的高強度而損壞,先通過延展器將脈衝時寬延展,使得雷射脈衝的時寬變長並減小雷射功率,但雷射光的注量(fluence)仍然維持不變,之後再讓脈衝通過增益介質來使其提高能量。雷射脈衝被放大後,再使其通過壓縮器將脈衝時寬壓縮,光能維持不變而脈衝時寬壓縮,即可得到超短脈衝雷射。
再生放大器的設計最終目標是要將脈衝放大至110 mJ,進而產生高峰功率的超短脈衝,並且使其重複率到達100 Hz。脈衝壓縮器預計要將脈衝時寬從400 ps壓縮至200 fs。而在架設的時程上,第一級再生放大器與第二級再生放大器為同時進行,故架設時為將脈衝延展後的光束作分光同時進行架設。
本論文為使用脈衝延展後的光束作架設,藉由量測輸入與輸出的光束輪廓(beam profile)確認共振腔的架設。當摻鐿氟化鈣晶體被汲發時,可將脈衝關在共振腔內將其放大。
This thesis describes how to design and construct an ultrashort pulse regenerative amplifier. This ultrashort pulse regenerative amplifier system is a chirped pulse amplification system, which consists of a pulse stretcher, a regenerative amplifier, and a pulse compressor. Regenerative amplifier is divided into two levels to get more energy for the gain medium.
To prevent the gain medium damaging by the amplified laser pulse, the pulse is first stretched by the pulse stretcher. The duration of the laser pulse is longer and the pick power is reduced. The fluence of the laser pulse remains unchanged. Then let the pulse pass through the gain medium several times to increase its pulse energy. After the laser pulse is amplified, its time duration is compressed by the pulse compressor. The pulse energy remains unchanged, and the pulse duration is compressed. Ultrashort pulse laser can be obtained.
The design of the second-order regenerative amplifier is expected to raise the pulse energy to 110 mJ, and the repetition rate is 100 Hz. The pulse compressor is expected to compress the pulse duration from 400 ps to 200 fs. The first-order and the second-order regenerative amplifier are built at the same time, so split the stretched pulse to do the construction.
This thesis use stretched pulses to do the construction, and check the construction of regenerative cavity by measuring the input and output beam profile. The pulse can be amplified by trapping in the cavity when the Yb:CaF2 crystal is pumped.
[1] M. C. T. Bahaa E. A. Saleh, Fundamentals of Photonics, 2nd Edition, 2007.
[2] M.-w. Lin and I. Jovanovic, "Direct laser electron acceleration in a density-modulated plasma waveguide," 2015.
[3] W. Koechner, Solid-State Laser Engineering, 1999.
[4] 朱旭新, "高相干性高穩定度十兆瓦雷射系統之建造與應用:雷射-原子團交互作用與X光雷射," 2005.
[5] 鄒景文, "高功率超短脈衝再生放大器之製作及應用 = Construction and applications of an ultrashort pulse laser regenerative amplifier," 2000.
[6] G. Machinet, G. Andriukaitis, P. Sevillano, J. Lhermite, D. Descamps, A. Pugzlys, et al., "High-gain amplification in Yb:CaF2 crystals pumped by a high-brightness Yb-doped 976 nm fiber laser," Applied Physics B-Lasers and Optics, vol. 111, pp. 495-500, May 2013.
[7] E. Kaksis, G. Almasi, J. A. Fulop, A. Pugzlys, A. Baltuska, and G. Andriukaitis, "110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier," Optics Express, vol. 24, pp. 28916-28923, Dec 2016.
[8] G. Andriukaitis, E. Kaksis, G. Polonyi, J. A. Fulop, A. Baltuska, A. Pugzlys, et al., "220-fs 110-mJ Yb:CaF2 Cryogenic Multipass Amplifier," in 2015 Conference on Lasers and Electro-Optics, ed New York: Ieee, 2015.
[9] M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, et al., "Yb:CaF2 - a new old laser crystal," Applied Physics B-Lasers and Optics, vol. 97, pp. 327-338, Oct 2009.
[10] K. K. Li, "Stability and astigmatic analysis of a six-mirror ring cavity for mode-locked dye lasers," Applied Optics, vol. 21, pp. 967-970, 1982.
[11] H. A. Haus, Waves and Fields in Optoelectronics 1983.
[12] A. A. Tovar and L. W. Casperson, "Generalized Sylvester theorems for periodic applications in matrix optics," Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 12, pp. 578-590, Mar 1995.
[13] H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, "Astigmatically compensated cavities for CW dye lasers," Ieee Journal of Quantum Electronics, vol. QE 8, pp. 373-&, 1972.
[14] L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," Journal of Applied Physics, vol. 34, pp. 2346-&, 1963.
[15] A. E. Siegman, Lasers, 1986.
[16] J. Wang, Fundamental Principles of Lasers and Ultrafast Optics, 1990-2000.
[17] D. N. Papadopoulos, F. Friebel, A. Pellegrina, M. Hanna, P. Camy, J. L. Doualan, et al., "High repetition rate Yb:CaF2 multipass amplifiers operating in the 100 mJ range," Ieee Journal of Selected Topics in Quantum Electronics, vol. 21, p. 11, Jan-Feb 2015.