簡易檢索 / 詳目顯示

研究生: 劉濬嘉
Liu, Chun-Chia
論文名稱: 應用差分干涉對比術於微米級透明材質的高度量測方法
Height measurement for micro-transparent object by Differential Interference Contrast
指導教授: 林士傑
Lin, Shin-Chieh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 110
中文關鍵詞: 差分干涉對比術修正型傅立葉相位積分法雙波長相移干涉術定量化相位還原渥拉斯頓稜鏡
外文關鍵詞: Differential Interference Contrast, Modified Fourier Phase Integration, Two-Wavelength Phase-Shifting Interferometry, quantitative phase restoration, Wollaston prism
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光電產業的開發傾向於使用透明材質為基板,如軟性顯示器(Flexible Plastic Display)、透明導電薄膜等。而目前針對透明材質量測的技術仍在研究階段,故如何開發一透明材質的高度量測,格外重要。

    本研究針對差分干涉對比(Differential Interference Contrast, DIC)技術於透明材質的重建方法作修正。首先,我們模擬光在DIC中穿過待測物得到的微分影像;修正M. R. Arnison等人提出的Hilbert轉換(Hilbert Transform),成功重建在不同形貌的物件,這方法可應用在邊緣形貌為緩坡、陡峭或步階的待測物。另外建立一穿透式DIC實驗架構,搭配不同波長光源作驗證並分析結果。藉由修正型傅立葉相位積分方法,可精確地重建邊緣為緩坡的微米級透明材質物件。


    Due to the development of Opto-electronic industry such as flexible display, Indium Tin Oxide (ITO), lots of substrate trend to use transparent materials. In recent years, the technique of measure transparent materials is still in investigation. It is the most important to measure the height of transparent
    materials.

    This study designed one integration method to improve the Differential Interference Contrast (DIC) microscopy system for transparent materials. Firstable, we can get the differential image when light pass through virtual model in DIC. The Hilbert Transform theory presented by M. R. Arnison on 2000 [34] was corrected and reconstructed in different topography by author successfully. This modified method can be applied for the different types edges, such as gentle ascent、steep slope、and step. We set the experiment of transmitted DIC. The author use different wavelength in the test of DIC and compare the results. Through the Modified Fourier Phase Integration (MFPI),
    the micro-level gentle ascent edge on transparent materials can be reconstructed precisely.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 研究背景 1 第二章 文獻回顧 14 2-1 光學原理 14 2-2 DIC簡介 19 2-3 DIC相關文獻回顧 26 2-4 雙波長相移干涉術 38 2-4-1 雙波長技術簡介 38 2-4-2 雙波長理論介紹 40 2-5 增加縱向量測範圍相關文獻 43 2-5-1 利用雙波長相移干涉術於步階量測 43 2-5-2 利用AOM於雙波長技術 45 2-5-3 提出以雙波長搭配反射式DIC理論 46 2-5-4 分析等效波長的誤差 47 第三章 DIC成像與重建原理 50 3-1 DIC成像原理 50 3-2 四步相移影像處理演算法 53 3-3 定量化傅立葉相位積分法 56 第四章 模擬與重建法測試 57 4-1 影像模型建立 57 4-2-1 待測物模型建立 57 4-2-2 實驗模擬參數 59 4-2 定量化傅立葉積分修正 60 4-2-1 傅立葉頻譜置中 60 4-2-2 積分前作對稱化 62 4-2-3 誤差最小化修正 64 第五章 量測實驗與結果 71 5-1 實驗架構 71 5-1-1 光路型式 72 5-1-2 實驗器材 73 5-2 實驗方法 77 5-3 穿透式DIC實驗量測結果 78 5-3-1 量測待測物 78 5-3-2 穿透式DIC量測結果 87 第六章 結論與建議 104 6-1 結果討論 104 6-2 建議 106 參考文獻 107

    [1] 李敏鴻,“軟性顯示器的計數與發展關鍵,”
    http://www.ctimes.com.tw/Art/Show2.asp?O=200806061500332065&F=%B9q%A4l%AF%C8, (2008/06/06).
    [2] 陳麒麟, 張榮芳, 張加強, “軟性顯示器發展及關鍵技術現況,” 機械工業雜誌, 258期, pp. 110-121(2004).
    [3] Displaybank, http://www.displaybank.com , (2007/05).
    [4] 阮正鈞, http://www.zimmerman.com.tw/news/siddata/taylor-4.pdf, (2004/07).
    [5] 廖界程, 張維哲, 羅文期, “白光干涉三維檢測系統介紹與應用,”
    http://www.chromaate.com/chroma/webdrive/news/2008/200811_7500series.pdf, (2008/11).
    [6] 中央研究院生醫所,“共軛焦顯微鏡,”
    http://www.ibms.sinica.edu.tw/html/sup4/instrument/confocal/confo.htm
    [7] 余逸群,“利用光學讀寫頭實現雙波長顯微干涉術,” 國立中興大學機械工程研究所碩士論文, (2006/07)
    [8] B. Bhushan, J. C. Wyant, J. Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profile ,” Wear, Vol. 122, pp.301-312 (1988).
    [9] D. B. Murphy, “Fundamentals of Light Microscopy and Electronic Imaging,” Wiley, pp. 153-168 (2003).
    [10] Displaybank report, "Flexible Display Technology and Market Forecast (2008~2020)," http://www.displaybank.com, (2008/10).
    [11] 陳泳丞,“電子紙問世,”工商時報
    http://blog.xuite.net/opl2134/happy/23048901?ref=rel
    [12] 張良知, “光干涉學及其應用-光之干涉,”科儀新知, 第十卷第五期, 54-63頁(1989)
    [13] E. Hecht, “Optics Fourth Edition,” Addison Wesley, pp. 10-358 (2002).
    [14] S. O. Kasap, “OPTOELECTRONICS AND PHOTONICS Principles and Practices , International Edition,” Prentice-Hall, pp.275-314 (2001).
    [15] D. B. Murphy, “Fundamentals of Light Microscopy and Electronic Imaging,” Wiley, pp. 153-168 (2003).
    [16] R. Danz and P. Gretscher, “C–DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films, Vol. 462-463, pp.257-262 (2004).
    [17] M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Apt. Opt., Vol.45, pp.460-469 (2006).
    [18] M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent application 2005-0152030 (2005/7/14).
    [19] S. B. Mehta and C. J. Sheppard,“Partially coherent image formation in differential interference contrast (DIC) microscope,”Opt. Exp, Vol. 16, No. 24, pp.19462-19479 (2008)
    [20] S. S. Kouab and C. J. R. Sheppard, “Quantitative Phase Restoration in Differential Interference Contrast(DIC) Microscopy,” Optical and Digital Image Processing, Proc. of SPIE, Vol. 7000, 700005 (2008).
    [21] C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE, Vol. 2984, pp.72-81 (1997).
    [22] M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc., Vol. 214, pp.7-12 (2004).

    [23] R. T. Framkot amd R. Chellappa, “A Method for Enforcing Integrability in Shape from Shading Algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 4, pp.439-451 (1988).
    [24] K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A, Vol. 18, No. 8, pp.1862-1870 (2001).
    [25] K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A, Vol. 18, No. 8, pp.1871-1881 (2001).
    [26] S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV, Proc. of SPIE, Vol. 6443, 64430M (2007).
    [27] 余昇剛,“應用差分干涉對比術於透明材質的三維形貌量測方法,” 國立清華大學動力機械工程研究所碩士論文, (2009/06)
    [28] K. Creath,“Step height measurement using two-wavelength phase-shifting interferometry,”Applied. Optics, Vol. 26, No. 14, pp.2810-2816 (1987).
    [29] R. Dandliker, R. Thalmann, and D. Prongue,“Two-wavelength laser interferometry using superheterodyne detection,”Opt. Letters, Vol. 13, No. 5, pp.339-341 (1988).
    [30] P. Hariharan, Maitreyee Roy,“Achromatic phase-shifting for two-wavelength phase-stepping interferometry,”Optic, pp.220-222 (1996).

    [31] Y. Y. Cheng and J. C. Wyant,“Two-wavelength phase shifting interferometry,”Appl. Opt., Vol. 23, No. 24, pp.4539-4543 (1984).
    [32] Nikon,Microscopy, http://www.microscopyu.com/tutorials/java/dic/wavefrontcomparison/index.html,
    [33] C. Preza, “Rotational-diversity phase estimation from differential-interference-contrast microscopy images,”J.Opt. Soc. Am. A, Vol. 17, pp.415-424(2000).
    [34] M. R. Arnison, C. J. Cogswell, N. I. Smith, P. W. Fekete, K. G. Larkin,“Using the Hilbert transform for 3D visualization of differential interference contrast microscope images,”Journal of Microscopy, Vol. 199, Pt 1, pp.79-84(2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE