研究生: |
江宛庭 |
---|---|
論文名稱: |
加寬匯流排的動態隨機存取記憶體之三維修復架構 3D Redundancy Architecture for Wide-I/O DRAM |
指導教授: | 吳誠文 |
口試委員: |
吳誠文
呂學坤 李進福 蘇朝琴 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 三維堆疊架構 、加寬匯流排 、動態隨機存取記憶體 、記憶體修復 、記憶體測試 、良率 |
外文關鍵詞: | 3D IC, wide-I/O, DRAM, memory repair, memory testing, yield |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三維堆疊架構近年來已成為高集成度電子系統的新興技術,且有高資料頻寬及低功耗的特性,整體架構通常由記憶體和邏輯晶片組成,其中大容量記憶體的良率往往會比邏輯晶片低,所以針對記憶體設計有效的測試及修復機制在維持良率上更是扮演不可或缺的角色。在此篇論文中,我們針對加寬匯流排的動態隨機存取記憶體發展兩種不同的三維修復架構,分別稱為CRA1和CRA2,兩者最主要的差別在於備份記憶體的類型及擺放位置,在第一種架構中,各層動態隨機存取記憶體皆有備份記憶體,其類型為動態隨機存取記憶體,且可修復三維堆疊架構中的任一層;第二種架構中,我們將備份記憶體配置在最底層的邏輯晶片上,其類型為靜態隨機存取記憶體,同樣可修復三維堆疊架構中的任一層。
在實驗中,我們實作了硬體架構並與傳統修復架構(TRA)比較,分析不同修復架構的修復率及所需面積,第一個實驗觀察共用不同層備份記憶體對修復率有何影響,實驗結果發現修復率在可共用備份記憶體的情況下,可達到最多3%的成長,但是所需的面積跟傳統修復架構相同。第二個實驗觀察將備份記憶體放置在各層晶片上和放置在最底層邏輯晶片上的影響,實驗結果發現後者可使用少於前者40%的備份記憶體來達到與之相同的修復率,但由於後者的備份記憶體設計上較有彈性,所以相對要多付出1.27%面積的代價。
The three-dimensional integrated circuit (3D IC) is considered a promising approach that can obtain high data band-width and low power consumption for future electronic systems that require high integration level. One of the popular drivers for 3D IC is the integration of a memory stack and a logic die. Because the yield of a 3D IC is the product of respective yields of the mounted dies, the yields of the memory dies and logic die must be high enough, or the 3D IC will be too expensive to be manufactured. It is generally agreed that the yield of large memories that are manufactured with advanced technologies is lower than the logic die. As a consequence, to obtain a high yield of 3D ICs, efficient test and repair methodologies for memories are necessary. In this thesis, we target the wide-I/O dynamic random access memory (DRAM) and propose two 3D redundancy architectures, i.e., Cubical Redundancy Architectures 1 and 2 (CRA1 and CRA2). In CRA1, spares are associated with each DRAM die as in a conventional 2D architecture. In CRA2, we use a static random access memory (SRAM) on the logic die as spares.
We implemented both CRA1 and CRA2, and compared their repair rates as well as area overhead with the traditional redundancy architecture (TRA). Experimental results show that the CRA1 can obtain up to 3% higher stack yield than the TRA with the same area overhead. On the other hand, the CRA2 can obtain the same yield as the CRA1 with 40% less spares, but 1.27% higher area overhead than the CRA1.
[1]U. Kang, H.-J. Chung, S. Heo, D.-H. Park, H. Lee, J. H. Kim, S.-H. Ahn, S.-H. Cha, J. Ahn, D. Kwon, J.-W. Lee, H.-S. Joo, W.-S. Kim, D. H. Jang, N. S. Kim, J.-H. Choi, T.-G. Chung, J.-H. Yoo, J. S. Choi, C. Kim, and Y.-H. Jun, "8Gb 3-D DDR3 DRAM using through-silicon-via technology", IEEE Jour. of Solid-State Circuits, vol. 45, no. 1, Jan. 2010, pp. 111-119.
[2]T. Sekiguchi, K. Ono, A. Kotabe, and Y. Yanagawa, "1-Tbyte/s 1-Gbit DRAM architecture using 3-D interconnect for high-throughput computing", IEEE Jour. of Solid-State Circuits, vol. 46, no. 4, Apr. 2011, pp. 828-837.
[3]S.-K. Lu, C.-W. Wu, and J.-F. Li, "On test and repair of 3D random access memory", in Proc. IEEE Asia South Pacific Design Autom. Conf., Jan. 2012, pp. 744-749.
[4]S.-K. Lu, U.-C. Lu, S.-W. Pong, and H.-C. Cheng, "Efficient test and repair architecture for 3D TSV-based random access memories", in Proc. IEEE Symp. on VLSI Design Automation and Test (VLSI-DAT), Apr. 2013, pp. 1-4.
[5]L. Jiang, Y. Liu, L. Duan, Y. Xie, and Q. Xu, "Modeling TSV open defects in 3D-stacked DRAM", in Proc. International Test Conference (ITC), Oct 2010, pp. 1-9.
[6]L. Jiang, R. Ye, and Q. Xu, "Yield enhancement for 3D-stacked memory by redundancy sharing across dies", in Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, Nov. 2010, pp. 230-234.
[7]M. Taouil and S. Hamdioui, "Layer redundancy based yield improvement for 3D wafer-to-wafer stacked memories", in Proc. IEEE European Test Symposium (ETS), Trondheim, May 2011, pp. 45-50.
[8]J. Xie, J. Zhao, X. Dong, and Y. Xie, "Architectural benefits and design challenges for three-dimensional integrated circuits", in Proc. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2010, pp. 540 -543.
[9]H.-H. S. Lee and K. Chakrabarty, "Test challenges for 3D integrated circuits", in Proc. IEEE Des. Test Comput., vol. 26, no. 5, Sep.-Oct. 2009, pp. 26–35.
[10]P.-Y. Chen, C.-W. Wu, and D.-M. Kwai, "On-chip testing of blind and open-sleeve TSVs for 3D IC before bonding", in Proc. IEEE Very Large Scale Integr. Test Symp., Apr. 2010, pp. 263-268.
[11]E. J. Marinissen, J. Verbree, and M. Konijnenburg, "A structured and scalable test access architecture for TSV-based 3D stacked ICs", in Proc. IEEE Very Large Scale Integr. Test Symp., Apr. 2010, pp. 269-274.
[12]E. J. Marinissen and Y. Zorian, "Testing 3D chips containing through-silicon vias", in Proc. IEEE International Test Conference (ITC), 2009, pp. 1-11.
[13]J.-F. Li, and C.-W. Wu, "Is 3D integration an opportunity or just a hype?", in Proc. IEEE 15th Asia and South Pacific Design Automation Conference (ASP-DAC), 2010, pp. 541-543.
[14]H. Vuong, "Mobile memory technology roadmap", Qualcomm Technologies, Inc. JEDEC Solid State Technology Association, 2013.
[15]C. Kim, "High-bandwidth memory interface design", Dept. of Electrical Engineering Korea University, Seoul, Korea, Feb. 2013.
[16]Gu, S.Q. Marchal, P. Facchini, M. Wang, F. Suh, M. Lisk, D. Nowak, M., "Stackable memory of 3D chip integration for mobile applications", Electron Devices Meeting, IEDM 2008., 15-17 Dec. 2008, San Francisco, pp. 1- 4.
[17]C. Weis, I. Loi, L. Benini, and N. Wehn, "Exploration and optimization of 3-D integrated DRAM subsystems", in Proc. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 32, no. 4, April 2013, pp. 597-610.
[18]N. Robson, J. Safran, C. Kothandaraman, A. Cestero, X. Chen, R. Rajeevakumar, A. Leslie, D. Moy, T. Kirihata, and S. Iyer, "Electrically programmable fuse (eFUSE): From memory redundancy to autonomic chips", in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2007, pp. 799-804.
[19]T.-C. Huang, K.-Y. Lu, and Y.-C. Huang, "HYPERA: High-yield performance-efficient redundancy analysis", in Proc. 19th IEEE Asian Test Symposium (ATS), 2010, pp. 231-236.
[20]S. Deutsch, B. Keller, V. Chickermane, S. Mukherjee, N. Sood, S. K. Goel, J.-J. Chen, A. Mehta, A. Mehta, F. Lee, and E. J. Marinissen, "DfT architecture and ATPG for interconnect tests of JEDEC wide-I/O memory-on-Logic die stacks", in Proc. IEEE International Test Conference (ITC), 2012, pp. 1-10.
[21]M. Taouil, S. Hamdioui, K. Beenakker and E. J. Marinissen, "Test cost analysis for 3D die to wafer stacking", in Proc. IEEE Asian Test Symposium (ATS), 2010, pp. 435-441.
[22]Y.-F. Chou, D.-M. Kwai, M.-D. Shieh, and C.-W. Wu, "Reactivation of spares for off-chip memory repair after die stacking in a 3-D IC with TSVs", in Proc. IEEE Transactions on Circuits and Systems, 2013, pp. 1-9.
[23]Y.-F. Chou, D.-M. Kwai, and C.-W. Wu, "Yield enhancement by bad-die recycling and stacking with through-silicon vias", in Proc. IEEE Trans. on VLSI Systems, vol. 19, Aug. 2011, pp. 1346-1356.
[24]C.-W. Chou, Y.-J. Huang, and J.-F. Li, "Yieldenhancement techniques for 3D random access memories", in Proc. IEEE Symp. on VLSI Design Automation and Test (VLSI-DAT), 2010, pp. 104-107.
[25]Mincent Lee, L.-M. Denq, and C.-W. Wu, "A memory built-in self-repair scheme based on configurable spares", in Proc. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 30, Jun. 2011, pp. 919-929.
[26]L.-T. Wang, C.-W. Wu, and X. Wen, "Design for testability: VLSI test principles and architecture", Elsevier (Morgan Kaufmann), San Francisco, 2006.
[27]J.-S. Kim, C. S. Oh, H. Lee, D. Lee, H.-R. Hwang, S. Hwang, B. Na, J. Moon, J.-G. Kim, H. Park, J.-W. Ryu, K. Park, S.-K. Kang, S.-Y. Kim, H. Kim, J.-M. Bang, H. Cho, M. Jang, C. Han, J.-B. Lee, K. Kyung, J.-S. Choi, and Y.-H. Jun, "A 1.2 V 12.8 GB/s 2 Gb mobile wide-I/O DRAM with 4 128 I/Os using TSV-based stacking", IEEE Jour. of Solid-State Circuits, vol. 47, no. 1, Jan. 2012, pp. 107-116.
[28]Wide I/O Single Data Rate (JEDEC Standard JESD229). JEDEC Solid State Technology Association, Dec. 2011. http://www.jedec.org.
[29]C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, "BRAINS: A BIST complier for embedded memories", in Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems (DFT), Yamanashi, Oct. 2000, pp. 299-307.
[30]C.-T. Huang, The programmable memory BIST datasheet, version 1.1, Oct. 2001.
[31]K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, "Automatic generation of memory built-in self-test cores for system-on-chip", in Proc. 10th IEEE Asian Test Symp. (ATS), Kyoto, Nov. 2001, pp. 91-96.
[32]C.-T. Huang, The user guide of programmable memory BIST compiler, version 1.0, Oct. 2001.
[33]J.-S. Kim, C. S. Oh, H. Lee, D. Lee, H.-R. Hwang, S. Hwang, B. Na, J. Moon, J.-G. Kim, H. Park, J.-W. Ryu, K. Park, S.-K. Kang, S.-Y. Kim, H. Kim, J.-M. Bang, H. Cho, M. Jang, C. Han, J.-B. Lee, K. Kyung, J.-S. Choi, and Y.-H. Jun, "A 1.2 V 12.8 GB/s 2 Gb mobile wide-I/O DRAM with 4 128 I/Os using TSV-based stacking", in Proc. IEEE International Solid State Circuits Conference (ISSCC), Feb. 2011, pp. 496-498.
[34]Artisan Standard Library SRAM Generator User Manual. Artisan Components, 2003.
[35]R. Hundal, V. G. Oklobdzija, "Determination of optimal sizes for a first and second level SRAM-DRAM on-chip cache combination", in Proc. IEEE International Conference on Computer Design (ICCD), 1994, pp. 60-64.
[36]T. K. Moon, "Error correction coding: mathematical methods and algorithms", John Wiley & Sons, 2005.
[37]C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and S.-L. Lu, "Reducing cache power with low-cost, multi-bit error-correcting codes", in Proc. of the 37th Annual International Symposium on Computer Architecture (ISCA), vol. 38, June 2010.