研究生: |
李善源 Lee, Shan Yuan |
---|---|
論文名稱: |
陽極支撐型及金屬支撐型電觸媒平板處理氮氧化物之研究 Anode and Metal Supported Electro-Catalytic Double Cell and Treatment of Nitrogen Oxide |
指導教授: |
汪上曉
Wong, David Shan-Hill |
口試委員: |
黃大仁
Huang, Ta Jen 葉君棣 Yeh, Chuin Tih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 氮氧化物處進分解法 、陽極支撐型電觸媒平板 、金屬支撐型電觸媒平板 |
外文關鍵詞: | Promoted NOx Decomposition, Anode Supported Electrochemical Double cells, Metal Supported Electrochemical Double Plates |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以氮氧化物促進分解法(Promoted NOx Decomposition, PND)為基礎,利用陽極與陰極所產生的電動勢於觸媒表面上直接分解氮氧化物,可有效的處理工廠鍋爐廢氣中的氮氧化物。比較前人製備陽極支撐型蜂巢觸媒(Electro-Catalytic Honeycomb, ECH)與電解質支撐型平板(Electro-Catalytic double cell, EDC)之成本與工序,因此本研究以金屬和陽極分別做為支撐型平板觸媒,相較其成本更便宜且製作過程較簡單。以通入模擬的廢氣測試結果顯示,經過觸媒反應後之排放廢氣濃度對反應速率之趨勢與文獻之結果相符合,證明陽極與金屬支撐型平板觸媒之可行性。金屬支撐型平板大量放入模組進行燃燒器廢氣處理測試,結果顯示觸媒處理效果具有加乘效應。然而金屬支撐型平板反應速率低於本實驗室先前之研究成果,推測可能的原因是單位面積觸媒量不足以及質傳阻力的影響。
The thesis is based on the promoted NOx decomposition (PND) method, which use the electromotive force directly decomposing the nitric oxides on the surface of the catalysts and it can effectively deal with the exhaust gas. Considering the costs of the previous studies prepared the supported electro-catalytic honeycomb (ECH) and electro-catalytic double cell (EDC). Thus, we use the new type catalysts based on the anode supported electrochemical double cells (ASEDC) and anode supported electrochemical double plates (MSEDP), due to the MSEDP is much cheaper and the production process is relatively simpler. Our experiments results prove the feasibility of ASEDC and MESDP that the performance has been consistent with the literatures when they are dealing with the simulated exhaust gas. Moreover, the catalysts have the additive effects due to the treatment of the real burner exhaust gas by MSEDP. However, the calculated results show that the reaction rate of MSEDP is lower than the ASEDC. The above reasons are the lack of the coated cathode and the effect of the mass transfer resistance.
1. 行政院環境保護署,空氣品質改善維護資訊網,PM2.5對健康的影響,
http://air.epa.gov.tw/Public/suspended_particles.aspx,民國一百零四年。
2. 吳昇憲,電觸媒轉化器處理鍋爐廢氣中之氮氧化物,國立清華大學化工所
碩士論文,民國一百零二年。
3. 江德一,以電化學雙電池/電觸媒蜂巢促進分解二氧化硫及氮氧化物至實用
之研究,國立清華大學化工所博士論文,民國一百零三年。
4. Roy S, Hegde MS, Madras G. Catalysis for NOx abatement. Applied Energy 2009;86(11):2283-2297.
5. Matsumoto SI. Recent advances in automobile exhaust catalysts. Catalysis Today 2004;90(3-4):183-190.
6. Zhu JJ, Thomas A. Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B-Environmental 2009;92(3-4):225-233.
7. Forzatti P. Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis a-General 2001;222(1-2):221-236.
8. Heck RM, Catalytic abatement of nitrogen oxides-stationary applications. Catalysis Today 1999;53(4):519-523.
9. Takeuchi M, Matsumoto S. NOx storage-reduction catalysts for gasoline engines. Topics in Catalysis 2004;28(1-4):151-156.
10. Xu LF, Graham G, McCabe R. A NOx trap for low-temperature lean-burn-engine applications. Catalysis Letters 2007;115(3-4):108-113.
11. Hansen KK. Solid state electrochemical DeNO(x)-An overview. Applied Catalysis B-Environmental 2010;100(3-4):427-432.
12. Huang TJ, Chou CL. Feasibility of simultaneous NO reduction and electricity generation in SOFCs with V2O5 or Cu added LSCF-GDC cathodes. Electrochemistry Communications 2009;11(2):477-480.
13. Huang TJ, Chou CL. Electrochemical NOx Reduction with Power Generation in Solid Oxide Fuel Cells with Cu-Added (LaSr)(CoFe)O-3-(Ce,Gd)O2-x Cathode. Journal of the Electrochemical Society 2010;157(3): P28-P34.
14. Huang TJ, Hsiao IC. Nitric oxide removal from simulated lean-burn engine exhaust using a solid oxide fuel cell with V-added (LaSr)MnO3 cathode. Chemical Engineering Journal 2010;165(1): 234-239.
15. Huang TJ, Wu CY, Lin YH. Electrochemical Enhancement of Nitric Oxide Removal from Simulated Lean-Burn Engine Exhaust via Solid Oxide Fuel Cells. Environmental Science & Technology 2011;45(13):5683-5688.
16. Huang TJ, Wu CY, Wu CC. Effect of temperature and concentration on treating NO in simulated diesel exhaust via SOFCs with Cu-added (LaSr)MnO3 cathode. Chemical Engineering Journal 2011;168(2): 672-677.
17. Huang TJ, Wu CY, Wu CC. Lean-burn NOx emission control via simulated stack of solid oxide fuel cells with Cu-added (LaSr)MnO3 cathodes. Chemical Engineering Journal 2011;172(2-3):665-670.
18. Huang TJ, Wu CY, Wu CC. Simultaneous CO and NOx removal from simulated lean-burn engine exhaust via solid oxide fuel cell with La0.8Sr0.2Mn0.95Cu0.05O3 cathode. Electrochemistry Communications 2011;13(8): 755-758.
19. Huang TJ. Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science 2011;4(10):4061-4067.
20. Huang TJ, Wang CH. Effect of temperature and NOx concentration on nitric oxide removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells. Chemical Engineering Journal 2011;173(2):530-535.
21. Huang TJ, Wu CY. Kinetic behaviors of high concentration NOx removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells. Chemical Engineering Journal 2011;178:225-231.
22. Huang TJ. NOx emission control for automotive lean-burn engines by electro-catalytic honeycomb cells. Chemical Engineering Journal 2012;203:193-200.
23. Huang TJ. Ambient temperature NOx emission control for lean-burn engines by electro-catalytic tubes. Applied Catalysis a-General 2012;445:153-158.
24. Huang TJ, Wu CY, Chiang DY. Effect of H2O and CO2 on NOx emission control for lean-burn engines by electrochemical-catalytic cells. Journal of Industrial and Engineering Chemistry 2013;19(3):1024-1030.