簡易檢索 / 詳目顯示

研究生: 陳致佑
Chih-Yu Chen
論文名稱: 隨機過程下不完全市場一些金融商品的定價與避險
Pricing and Hedging in Incomplete Market under Stochastic Volatility
指導教授: 陳佳信
Chia-Hsin Chen
韓傳祥
Chuan-Hsiang Han
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技管理研究所
Institute of Technology Management
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 51
中文關鍵詞: 不完全市場定價避險策略最適q測度
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 波動率(volatility)在金融市場當中具有不可或缺的角色,它不但會影響到金融商品的評價,也會影響投資者的風險控管策略。Black和Schole定義股票價格變化為一隨機過程,以往業界衍生性金融商品的定價皆以此為基準。

    然而,如此的定價卻會造成實際價格和定價之間的明顯差距。透過實證研究發現,實際上會存在「波動率微笑(volatility smile)」的情況,且波動率變化對買權價格的影響相當敏感,波動率為常數的假設明顯和事實不符。另外,在不完全市場的假設下,投資者對單一金融商品的價格看法會有所不同,選取的等價鞅測度(EMM,equivalently martingale measure)並不唯一,導致決定出的價格亦非唯一。

    本篇論文首先探討在風險中立機率測度下,如何利用「最適q測度」機率測度轉換,決定出不同機率測度 下的定價模型,接著利用決定出的模型,計算歐式選擇權(European option)以及變異數交換(variance swap)的價格,並且討論在不同的機率測度下,對應到的最適避險策略。最後,利用程式模擬,比較不同機率測度下的歐式選擇權及變異數交換價格,以及各種避險策略下各自的避險效果優劣。

    由最終的結果,我們可以觀察到歐式買權及變異數交換中的合理變異數值(fair variance),在不同的機率測度下確實有些許的不同,且當q值越小,得到的買權價格及合理變異數值也會越小。而在不同的機率測度下對應的避險策略,透過模擬比較,亦可發現其避險效果的確優delta避險。


    1. 前言---p5 2. 機率測度---p8 2.1. 最適q測度(q-optimal probability measure)---p9 2.2. Heston model---p11 2.3. Bates model---p13 3. 金融商品定價---p16  3.1. Heston model下的歐式選擇權定價---p16 3.2. Bates model下的歐式選擇權定價---p17 3.3. Heston model下利用傅立葉轉換定價歐式選擇權---p19 3.4. 變異數交換(variance swap)定價---p21 4. 避險策略---p27 4.1. 最小熵測度下的最佳避險策略---p27 4.2. 最小熵鞅測度下的最佳避險策略---p28 5. 實證研究---p30 5.1. Heston model下的歐式買權定價模擬---p30 5.2. Heston model下的變異數交換定價模擬---34 5.3. 不同機率測度下的避險效果比較---p34 6. 結論---p39 附錄---p40 參考文獻---p49

    [1] D. Bates (1996), “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options”, Review of Financial Studies, 9, page 69-107

    [2] D. Bates (1998), “Pricing Option under Jump-Diffusion Process”, Finance department, The Wharton School University of Pennsylvania Philadelphia, PA 19104-6367, page 37-88

    [3] D.Becherer (2003), “Rational Hedging and Valuation of Integrated Risks under Constant Absolute Risk Aversion”, Insurance: Mathematics and Economics, 33, page 1–28

    [4] D.Becherer, (2004), “Utility-Indifference Hedging and Valuation via Reaction Diffusion Systems”, Proceedings of The Royal Society, Series A, 460, page 27–51.

    [5] F. Biagini, P. Guasoni and M. Pratelli (2000), ”Mean-variance hedging for stochastic volatility models”, Mathematical Finance 10(2), page 109-123

    [6] S. Borak, K. Detlefsen and W. Hardle (2005), “FFT-based Option Pricing”,Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2005-011

    [7] P. Carr and D. Madan (1998), “Option Valuation Using the Fourier Transform, Journal of Computational Finance, No.2, page 61-78

    [8] P. Carr and D. Madan (1998), “Towards a Theory of Volatility Trading”, in Risk Book on Volatility, New York, page 417-427

    [9] F. Delbaen, W. Schachermayer, (1994), A General Version of the Fundamental Theorem of Asset Pricing. Math. Annalen, Vol. 300, page 463–520.

    [10] K. Demeterfi, E. Derman, M. Kamal and J. Zou (1999), “A Guide to Variance Swaps”, RISK 12(6), page 54-59

    [11] D. Duffie, J. Pan, and K. Singleton (2000), “Transform Analysis and Asset Pricing for Affine Jump-Diffusions”, Econometrica, 68, page 1343-1376

    [12] Y. El-Khatib, (2006), “Hedging Discontinuous Stochastic Volatility Models”, arXiv:math/0603527v1 [math.PR].

    [13] H. Follmer, M. Schweizer (1990), “Hedging of contingent claims under incomplete information”, Gordon and Breach, London, page 389-414

    [14] M. Frittelli, (2000), ”The Minimal Entropy Measure and the Valuation Problem in Incomplete Markets”, Math, Finance 10, page 39-52

    [15] P. Grandits and L. Krawczyk (1998), “Closeness of some Spaces of Stochastic Integrals”, Seminaire de Probabilites, XXXII, Lecture Notes in Math., 1686, Springer, Berlin, page 73–85

    [16] R. Grasselli and T. Hurd (2007), “Indifference pricing and hedging for volatility derivatives”, Applied Mathematical Finance, 14(4), page 303-317

    [17] P. Guasoni and F. Biagini (2002), “Mean-variance hedging with random volatility jumps”, stochastic analysis and applications 20(3), page 471-494

    [18] M. Harrison and S. Pliska (1981), “Martingales and Stochastic integrals in the theory of continuous trading”, Stoch. Proc. & Appl., Vol. 11, page. 215–260.

    [19] V. Henderson, D. Hobson, S. Howison and T. Kluge, (2005), “A Comparison of q-optimal option prices in a Stochastic Volatility Model with correlation”, Review of Derivatives Research 8 page.5-25.

    [20] S. Heston (1993), “A closed from solution for option with stochastic volatility with applications to bond and currency options”, The Review of Financial Studies 6(2), page 327-343

    [21] D. Hobson (2004), “Stochastic Volatility models, Correlation, and the -Optimal Measure”, Mathematical Finance, 14, page 537-556

    [22] J. Hull, A. White (1987), “The pricing of Options with Stochastic Volatility”, Journal of Finance, 42, page 281-300

    [23] S. Lan (1997), "Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods." Mathematical Finance, 7, page 413-426

    [24] A. Lim (2005), “Mean-variance hedging when there are jumps”, SIAM Journal on Control and Optimization, pages 1893-1922

    [25] R. Merton (1976), “Options Pricing when Underlying Returns are Discontinuous”, journal pf Financial Economics, 4, page 124-144

    [26] P. Protter, (1990), Stochastic integration and differential equations. A new approach. Springer-Verlag, Berlin.

    [27] F. Rouah, G. Vainberg (2007), “Option Pricing Models and Volatility Using Excel-VBA”, chapter 5, page 136-162

    [28] D. Satyajit (2002), “The Surprise Element: Jumps in Interest Rates”, Journal of Econometrics, 106, page 27-65

    [29] M. Schweizer (1999), “A minimality property of the minimal martingale measure”, Statistics and Probability Letters 42(1), page 27-31

    [30] M. Schweizer (1996), “Approximation pricing and the variance-optimal martingale measure”, The Annals of Probability, 24(1), page 206-236

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE