簡易檢索 / 詳目顯示

研究生: 廖峻葦
Liao, Chun-Wei
論文名稱: 三維錐型漸變式光學耦合器之設計與製作
Design and Fabrication of Three-Dimensional Adiabatic Tapered Couplers
指導教授: 李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 108
中文關鍵詞: 光學耦合器三維垂直錐型
外文關鍵詞: 3D, TAPER, BEAM SPOT CONVERTER
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,積體光學元件發展越來越迅速,效能越來越好,且體積也越做越小(通常小於1 □m),因此垂直與水平錐型結構之光學耦合器被研究來有效地將光源由光纖耦合至積體光學元件中;本論文研究一種新穎的製作方式,利用奈米壓印加上黃光微影的概念,以SU-8負型光阻與氮氧化矽(SiON)薄膜做為材料,提出具簡單又低成本的三維錐型漸變式光學耦合器製作原理與流程。由光束傳播法(Beam Propagation Method; BPM)計算光耦合效率與模擬結構尺寸,探討符合元件中耦合波導之折射係數的範圍為n=1.51~1.60,此範圍之SiON薄膜可簡單利用電漿輔助化學氣相沉積系統(plasma enhanced chemical vapor deposition;PECVD)得到。製程上,以SU-8旋塗成薄膜後,利用壓印成型的方法製作垂直方向的錐型結構,接著再利用SU-8為負型光阻的特性,使用標準黃光製程得到水平方向的錐型結構,完成三維錐型耦合器。量測實驗結果,當元件上有三維錐型結構且傳輸路徑為Pathway 1與Pathway 2時,不管是波長1550 nm範圍或1310 nm範圍,兩路徑整體損耗之頻譜幾乎完全相同,與無三維錐型結構之元件相比,整體損耗都提升了11dB以上;測試光纖與元件間對準, X軸與Y軸之方向皆可達到良好的對準偏移容忍度。


    摘要…………………………………………………………………Ⅰ Abstract……………………………………………………………Ⅱ 致謝…………………………………………………………………Ⅲ 目錄…………………………………………………………………Ⅴ 第一章 緒論………………………………………………………1 1.1 前言……………………………………………………………1 1.2 研究動機………………………………………………………5 1.3 論文架構………………………………………………………6 第二章 理論背景…………………………………………………7 2.1 波導(Waveguide)原理………………………………………7 2.1.1 光波導結構與種類…………………………………………7 2.1.2 平板波導……………………………………………………7 2.1.3 錐型漸變波導光耦合器(adiabatic tapered coupler)原理17 2.2 模擬軟體原理介…………………………………………….20 2.3 實驗原理……………………………………………………23 2.3.1 薄膜沉積原理……………………………………………23 2.3.2 SU8厚膜光阻特性探討……………………………………26 第三章 元件模擬與設計…………………………………………28 3.1 模擬流程圖…………………………………………………28 3.2 三維錐型光學耦合器模型建立及模擬環境設定…………28 3.3 三維錐型結構長度模擬……………………………………30 3.4 光學耦合器結構模擬………………………………………33 3.5 三維錐型結構前端模擬……………………………………43 3.6 耦合波導折射率模擬………………………………………49 3.7 光源與光學耦合器對準模擬………………………………52 3.8 製程變異模擬………………………………………………57 3.9 耦合器雙向耦合效率模擬…………………………………58 第四章 三維錐型漸變式光學耦合器製作流…………………59 4.1 SiON材料成長………………………………………………59 4.1.1 實驗參數調變……………………………………………59 4.1.2 SiON材料折射率分析……………………………………61 4.1.3 SiON材料傅立葉紅外線光譜(FTIR)分析………………63 4.1.4 SiON材料沉積速率分析…………………………………64 4.1.5 結論………………………………………………………65 4.2 三維錐形光學耦合器製程流程……………………………68 4.2.1 製程第一部分……………………………68 4.2.2 製程第二部分……………………………73 4.3 結論…………………………………………………81 第五章 元件量測與分析………………………………………83 5.1 實驗架設與量測方法………………………………………83 5.2 波長1550 nm區域………………………………………………86 5.2.1 波長1550nm區域量測實驗(Pathway 1).…………………86 5.2.2 波長1550 nm區域數據結果分析(Pathway 1)………………89 5.2.3 波長1550 nm區域量測實驗(Pathway 2)……………………90 5.2.4 波長1550 nm區域數據結果分析(Pathway 2)………………93 5.3 波長1310 nm區域……………………………………………93 5.3.1 波長1310 nm區域量測實驗………………………………93 5.3.2 波長1310 nm區域數據結果分析……………………………95 5.4 元件耦合損耗量測………………………………………………96 5.4.1 元件耦合損耗量測實驗………………………………………96 5.4.2 元件耦合損耗量測數據結果分析…………………………98 5.5 光纖-元件偏移對準…………………………………………99 5.5.1 光纖-元件偏移對準量測實驗……………………………99 5.5.2 光纖-元件偏移對準數據結果分析………………………101 第六章 結論與未來展望………………………………………102 6.1 結論………………………………………………………102 6.2 未來展望……………………………………………………103 參考文獻…………………………………………………………105

    [1]H. M. Presby, et al. “Near 100% efficient fiber microlenses,” Electron. Lett. 28, (1992).
    [2]A. Fenner Milton and W. K. Burns, "Mode Coupling in Optical Waveguide horns," IEEE Journal of Quantum Electronics, vol. QE-13, pp. 828-835 (1977).
    [3]R. K. Winn and J. H. Harris, "Coupling from Multimode to Single-Mode Linear Waveguides Using Horn-shaped Structures," IEEE Transactions on Microwave theory and Techniques, vol. MTT-23, pp. 3012-3015 (1975).
    [4]E. A. J. Marcatili, "Dielectric Tapers with Curved Axes and No Loss," IEEE Journal of Quantum Electronics, vol. QE-21, pp. 307-314 (1985).
    [5]G. R. Hadley, "Design of Tapered Waveguides for Improved Output Coupling," IEEE Photonics Technology Letters, vol. 5, pp. 1068-1070 (1993).
    [6]M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, "Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide," IEE E Photon. Technol. Lett., vol. 3, pp. 418-420 (1991).
    [7]T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, "Vertical InP/InGasAsP tapers for low-loss optical fiber-waveguide coupling," Electron. Lett., vol. 28, pp. 2040-2041 (1992).
    [8]T. Brenner and H. Melchior, "Integrated Optical Modeshape Adapters in InGaAsP/InP for Efficient Fiber-to-Waveguide Coupling," IEEE Photonics Technology Letters, vol. 5, pp. 1053-1056 (1993).
    [9]G. Muller, G. Wender, L. Stoll, H. Westermeier, and D. Seeberger, "Fabrication techniques for vertically tapered InP/InGasAsP spot-size transformers with very low loss," presented at Proc. Eur. conf. integrated Optics, Neuchatel, Switzerland, 1993.
    [10]A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai and D. W. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Optics express, vol. 11, No. 26, pp. 3555-3561, 2003.
    [11]Hisashi Terae, Binh-Khiem Nguyen, Tomoyuki Takahata and Eiji Iwase, “Tapered waveguide by liquid for a coupler of optical fibers to mems devices,” presented at conf. MEMS, Japen, 2008.
    [12]Richard Syms John Cozens, "Optical guide wave and devices," New York, Mcgraw-Hill, 1992.
    [13]Divid K. Cheng, 1989. "Field and Wave Electromagnetic 2/E," Addison Wesley Longman Press.
    [14] Okamoto K. 2006. "Fundamentals of Optical Waveguides 2/E," Academic Press.
    [15] Liu, J. M., "Photonic Devices," Cambridge University Press, 2005.
    [16]M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index fiber,” Appl. Opt. 17,3990, (Dec1978).
    [17]Y. Chung, and N. Dagli, “Assesssment of finite difference beam propagation method,” IEEE J. Quantum Electron., Vol. QE-26, pp. 1335-1339, (1990).
    [18]A. Splett, M. Majd, and K. Petermann, “A novel beampropagation method for large refractive index steps and largepropagation distance,” IEEE Photon. Technol. Lett., Vol. 3, pp. 466-468, (1991).
    [19]D. Yevick, and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron., Vol. QE-26, pp. 109-112, (1990).
    [20] Rsoft Design Group, BeamPROP user menu, Chapter 1, pp. 4-21.
    [21]莊達人,VLSI製造技術第四版,高立圖書 (2000).
    [22]L. Eckertova, and T. Ruzicka, “Diagnostics and Applications of Thin of Thin Films” Ch.1 & 2, Institute of Physics Publishing (1993).
    [23]M. I. Alayo, I. Pereyra, and M. N. P. Carreno, “Thick SiOxNy and SiO2 films obtained by PECVD technique at low temperatures,” Thin Solid Films, 332, 40, 1998.
    [24]M. S. Haque, H. A. Naseem, and W. D. Brown, “Characterization of High Rate Deposited PECVD Silicon Dioxide Films for MCM Applications,” J. Electrochem. Soc., 142, 3864, 1995.
    [25]M. S. Haque, H. A. Naseem, and W. D. Brown, “Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability,” Thin Solid Films, 308, 68, 1997.
    [26] A.L. Bogdanov , S.S. Peredkov, Microelectronics Engineering, 53, 493 (2000).
    [27] H.Lorenz , M.Despont , N.Fahni, et al. , Sensors and Aceuators, A64, 33 (1998).
    [28]B. Eyre, J Blosiu, D. Wiberg, B. Eyre ,J. Blosiu ,and D.W Taguchi, Proc IEEE MEMS’98 . Heideberg, Germamy, IEEE, 218 (1998).
    [29]Goran Z. Masanovic, Vittorio M. N. Passaro and Graham T. Reed, “Dual rating-Assisted Directional Coupling Between Fibers and Thin Semiconductor Waveguides,” IEEE Photonics Technology Letters, vol. 15, no. 10, october 2003.
    [30]M. I. Alayo, I. Pereyra, W. L. Scopel, and M. C. A. Fantini, “On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films,” Thin Solid Films, 402, 154, 2002.
    [31]F. Ay, and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials, 26, 33, 2004.
    [32]M.I. Alayo, I. Pereyra, W.L. Scopel, M.C.A. Fantini, Thin Solid Films 402 (2002) 154.
    [33]I.V. Afanasyev-Charkin, L.G. Jacobsohn, R.D. Averitt, M. Nastasi, J. Vac.Sci. Technol. 22 (2004) 2342.
    [34]E. Bustarret, M. Bensouda, M.C. Habrard, J.C. Bruyère, Phys. Rev. B38 (1988) 8171.
    [35]DATA Sheet for NANOTM SU-8 3000 Permanent Epoxy Negative Photoresist, released by MICRO-CHEM. Corp.
    [36]M. Hoffmann, Peter Kopka and Edgar Voges, "Low-Loss Fiber-Matched Low-Temperature PECVD Waveguides with Small-Core Dimensions for Optical Communication Systems," IEEE Photonics Technology Letters, vol. 9, No.9, Sep. 1997.
    [37]A. Borreman, S. Musa, A.A.M. Kok, M. B. J. Diemeer and A. Driessen, "Fabrication of Polymeric Multimode Waveguides and Devices in SU-8 Photoresist Using Selective Polymerization," Proceedings of IEEE/LEOS Conference, Amsterdam, pp. 84-86, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE