研究生: |
吳佩霖 Wu, Pei-Lin |
---|---|
論文名稱: |
奈米碳管/氯化鋰/聚丙烯腈複合材料之電紡絲製備 Fabrication of Carbon nanotubes/LiCl/Polyacrylonitrile composite fiber by electrospinning |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 奈米碳管 、氯化鋰 、電紡絲 |
外文關鍵詞: | carbon nanotubes, electrospinning, electrospun, LiCl |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電紡絲是一種簡單製備微米/奈米級纖維的方法,而增進導電性是複合纖維應用的目標之一。一般高分子複合材料導電機制可分為電子導電與離子導電,本實驗中經由兩種不同導電機制的材料作為添加物,使用奈米碳管與氯化鋰,製備成聚丙烯腈電紡複合纖維。
將多壁奈米碳管(MWCNTs)、酸化奈米碳管(acidized-MWCNTs)及氯化鋰製成CNTs/PAN、LiCl/PAN、CNTs/LiCl/PAN複合纖維。由SEM及TEM探討實驗參數對纖維形貌影響、DTA/TGA了解纖維的熱穩定性、四線量測法獲得纖維的導電性與I-V 曲線,探討複合載子對於導電機制的影響,以及碳管酸化處理對於導電表現造成的差異。
實驗結果顯示,加入3%酸化奈米碳管,相較原先含15%或20%
LiCl/PAN電紡纖維導電性上升至少10倍,表示酸化處理後的碳管接上的羧基有助於鋰離子於聚丙烯腈內的移動,使導電性增加。
Electrospinning is a convenient method to fabricate micro/nano fibers. However, artificial fiber has problems with its low conductivity. The conduction mechanism of polymer composites includes electronic conduction and ionic conduction. In this thesis, we prepared polyacrylonitrile(PAN) electrospun fiber with two different conduction mechanism additives: Carbon nanotubes(CNTs) and LiCl.
We used MWCNTs, acidized-MWCNTs and LiCl to fabricate CNTs/PAN、LiCl/PAN and CNTs/LiCl/PAN composite fiber. The morphology and thermal properties of fiber was investigated by SEM, TEM and DTA/TGA. Four-wire method was used to measure the conductivity and I-V curves. We discussed the conductivity mechanism of complex carriers and the effects on conductivity caused by adding acidized-MWCNTs.
With 3% acidized-MWCNTs addition, the conductivity of composite fiber based on 15% or 20% LiCl/PAN solution can increase more than ten times. The results show that the carboxylic group of acidized-MWCNTs can improve the lithium ion mobility in polyacrylonitrile.
[1] Xie, X. L.; Mai, Y. W.; Zhou, X. P., Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science and Engineering R 49 (2005) 89–112
[2] Sundaray, B.; Subramanian, V.; Natarajan, T. S.; Krishnamurthy, K., Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite, Applied Physics Letters 88 (2006) 143114
[3] Popov, V. N., Carbon nanotubes: properties and application, Materials Science and Engineering 43 (2004) 61–102
[4] Charles, E.; Carraher, J., Seymour/Carraher’s Polymer Chemistry, CRC Press, Seventh edition (2008)
[5] Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Tan, N. C. B., The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer 42 (2001) 261–272
[6] Reneker, D. H.; Chun, I., Nanometre diameter fibres of polymer produced by electrospinning, Nanotechnology 7 (1996) 216–223.
[7] Li, D.; Xia, Y. N., Electrospinning of nanofibers: Reinventing the wheel?,Advanced
Materials 16 (2004) 14 , 1151-1170
[8] Haghi, A. K.; Akbari, M., Trends in electrospinning of natural nanofibers, Physica Status Solidi A 204 (2007) 6, 1830–1834
[9] Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied Physics 87 (2000) 9, 4541-4537
[10] Qin, X. H.; Wan, Y. Q.; He, J. H.; Zhang, J.; Yu, J. Y.; Wang, S. Y., Effect of LiCl on electrospinning of PAN polymer solution: theoretical analysis and experimental verification, Polymer 45 (2004) 6409-6413
[11] Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Tan, N. C. B., The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer 42 (2001) 261–272
[12] Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J. H., Nanostructured Fibers via Electrospinning, Advanced Materials 13 (2001) 1, 70-72
[13] Seeram, R.; Kazutoshi, F.; Teo, W. E.; Lim, T. C.; Ma, Z., An introduction to Electrospinning and nanofibers, World Scientific Printers Pte Ltd, (2005)
[14] Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology 63 (2003) 2223–2253
[15] Dayal, P.; Liu, J.; Kumar, S.; Kyu, T., Experimental and Theoretical Investigations of Porous Structure Formation in Electrospun Fibers, Macromolecules 40 (2007) 21, 7689–7694
[16] Fong, H.; Chun, I.; Reneker, D. H.; Beaded nanofibers formed during electrospinning, Polymer 40 (1999) 4585–4592
[17] 林建中, 高分子材料性質與應用, 高立圖書, p.33-39
[18] Ra, E. J.; An, K. H.; Kim, K. K.; Jeong, S. Y.; Lee, Y. H., Anisotropic electrical conductivity of MWCNT PAN nanofiber paper, Chemical Physics Letters, 413 (2005) 188–193
[19] Wang, C.; Chien, H. S.; Hsu, C. H.; Wang, Y. C.; Wang, C. T.; Lu, H. A., Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures,
Macromolecules 40 (2007) 7973-7983
[20] 成會明, 奈米碳管, 五南圖書 (2004)
[21] Dai, H. J., Carbon nanotubes: opportunities and challenges, Surface Science 500 (2002) 218–241
[22] Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E., Fullerene pipes, Science 280 (1998) 5367,
1253-1256
[23] Hou, H. Q.; Ge, J. J.; Zeng, J.; Li, Q.; Reneker, D. H.; Greiner, A.; Cheng, S. Z. D., Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes, Chemistry of Materials 17 (2005) 967-973
[24] Stevens, D. R.; Downen, L. N.; Clarke, L. I., Percolation in nanocomposites with complex geometries Experimental and Monte Carlo simulation studies, Physical Review B 78 (2008) 235425
[25] Seth, D. M.; Derrick, R. S.; Wesley, A. R.; Satyajeet S. O.; Laura I.C.; Russell E. G., Morphological, Electrical, and Mechanical Characterization of Electrospun Nanofiber Mats Containing Multiwalled Carbon Nanotubes, Macromolecules 40 (2007) 997–1003
[26] Wang, H. X.; Wang, Z. X.; Li, H.; Meng, Q. B.; Chen, L. Q., Ion transport in small-molecule electrolytes based on LiI 3-hydroxypropionitrile with high salt contents, Electrochimica Acta 52 (2007) 2039–2044
[27] Qin, X. H.; Yang, E. L.; Li, N.; Wang, S. Y., Effect of Different Salts on Electrospinning of Polyacrylonitrile (PAN) Polymer Solution, Journal of Applied Polymer Science, 103 (2007) 3865–3870
[28] 顧宜, 複合材料, 新文京 (2002)
[29] 邱俊毅, 高分子電解質中相行為,作用力機制以及離子導電度研究, 國立交通大學應用化學研究所博士論文 (2005)
[30] Rahaman. M. S. A.; Ismail, A. F.; Mustafa, A., A review of heat treatment on polyacrylonitrile fiber, Polymer Degradation and Stability 92 (2007) 1421~1432
[31] Colin N. B.; Elaine M. M., Fundamental of molecular spectroscopy, McGRAW-HILL, 4Rev.ed (1994)
[32] 李惠菁, 多壁奈米碳管/聚乙烯醇高分子複合材料合成與物性分析研究, 國立清華大學材料科學工程學系碩士論文 (2008)
[33] Song, C. W.; Wang, T. H.; Qiu, Y. H.; Qiu, J. S.; Cheng, H. M., Effect of carbonization atmosphere on the structure changes of PAN carbon membranes, Journal of Porous Materials, 16 (2009) 2, 197
[34] Qin, X. H.; Wang, S. Y., Interior structure of polyacrylonitrile(PAN) nanofibers
with LiCl, Materials Letters 62 (2008) 1325–1327
[35] Delaram, F.; Mehdi, R.; Naser, M.; Behrooz, V., Effect of LiCl and non-ionic surfactant on morphology of polystyrene electrospun nanofibers, e-Polymers (2008) no.056
[36] 黃怡慧, 以電紡絲製備聚羥基丁酸酯纖維, 國立成功大學化學工程學系碩士論文 (2005)