研究生: |
牛崇愷 Niou, Chong-Kai |
---|---|
論文名稱: |
利用高通量篩選具備空間限制電荷轉移特性的熱活化延遲螢光分子 Discovery of TADF Emitters with Space-confined Charge-transfer Characteristics via High-throughput Screening |
指導教授: |
林昆翰
Lin, Kun-Han |
口試委員: |
吳典霖
Wu, Tien-Lin 林玠廷 Lin, Chieh-Ting |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 有機發光二極體 、熱活化延遲螢光 、SCCT 、計算性高通量篩選 |
外文關鍵詞: | OLED, TADF, SCCT, Computational high-throughput screening |
相關次數: | 點閱:52 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱活化延遲螢光 (thermally activated delayed fluorescence, TADF) 是第三代有機發光二極體 (organic light-emitting diodes, OLED) 材料所具有的發光機制。其原理是利用發光分子相近的單重態與三重態能量差 (ΔEST),使三重激發態可以透過反向系間轉換 (reverse intersystem crossing, rISC) 躍遷至單重激發態,進而衰退回基態並釋放螢光。由於高能量的三重態,藍光OLED在壽命與效率方面仍相對落後。本研究的動機是藉由尋找高效率的藍光TADF分子,期望能夠改善藍光OLED裝置的壽命與效率,。
為了提高效率以解決藍光OLED壽命問題,本研究採用空間限制電荷轉移 (space-confined charge-transfer, SCCT) 的分子設計策略,以加快分子的rISC速率。SCCT不同於傳統的TBCT (through-bond charge transfer) 和MR-TADF (multi-resonance thermally activated delayed fluorescence),其利用連接體限制供體與受體相對構型,增加兩者之間的相互作用,進一步促進單重態與三重態的電荷轉移 (charge transfer, CT) 和局域激發 (local excitation, LE) 的混成。這能在保持較小的ΔEST的同時,增加分子的自旋軌域耦合 (spin-orbit coupling, SOC),
本研究利用計算性高通量篩選的方法尋找高效率的發光分子,通過自動化建立SCCT分子資料庫並進行篩選。我們利用已合成的SCCT分子資料庫確立了可靠的計算方法,並設計了半自動化的高通量篩選工作流程,包括結構最佳化、激發態計算和rISC速率常數的估算等。
接著,在確立本次研究所要使用的供體、受體和連接體分子組件後,我們首先建立了約有一萬個分子的結構資料庫。目前為止,我們從分子資料庫中已計算完畢的3418個分子中,篩選出了41個符合篩選需求的分子,其中有五個分子可能成為高效率的藍色SCCT發光分子。除了對資料庫內各項性質進行了統計與趨勢分析,我們從多個角度對分子資料庫進行了討論,包括相關係數矩陣、分子組件能階對性質的影響等。我們對表現最佳的供體、受體組合進行了詳細討論,並從分子設計的角度提出了推薦的供體與受體組合。此外,我們進行了計算與實驗反向隙間速率常數的相關性分析,以驗證本研究的計算方法論。最後,我們進一步探討了在相同供體-受體組合下,不同連接體對分子性質的影響。
Thermally activated delayed fluorescence (TADF) is a luminescence mechanism characteristic of third-generation organic light-emitting diode (OLED) materials. This mechanism leverages the small energy gap between the singlet and triplet states (ΔEST) of the emitting molecules, allowing the triplet excitons to transition to the singlet excited state through reverse intersystem crossing (rISC) and subsequently decay to the ground state while emitting fluorescence. Despite significant advancements, blue OLEDs still lag in terms of lifetime and efficiency due to the high energy of triplet states. The motivation behind this study is to identify highly efficient blue TADF molecules to enhance the lifetime and efficiency of blue OLED devices.
To address blue OLEDs' efficiency and lifetime issues, this study employs a space-confined charge-transfer (SCCT) molecular design strategy to accelerate the rISC rate. Unlike traditional through-bond charge transfer (TBCT) and multi-resonance TADF (MR-TADF), SCCT utilizes linkers to constrain the relative configuration of donors and acceptors, thereby increasing their interaction. This design promotes the hybridization of charge transfer (CT) and local excitation (LE) states, maintaining a small ΔEST while enhancing spin-orbit coupling (SOC).
This study employs a computational high-throughput screening approach to identify efficient luminescent molecules by automatically constructing and screening an SCCT molecular database. We established a reliable computational methodology based on synthesized SCCT molecules and designed a semi-automated high-throughput screening workflow, including structure optimization, excited-state calculations, and rISC rate constant estimation.
After determining the donor, acceptor, and linker components to be used in this study, we constructed a structural database comprising approximately 10,000 molecules. To date, we have completed calculations for 3,418 molecules from the database, identifying 41 molecules that meet the screening criteria, among which five have the potential to be highly efficient blue SCCT emitters. In addition to statistical and trend analyses of various properties within the database, we conducted an in-depth analysis from multiple perspectives, including correlation matrices and the impact of molecular component energy levels on properties. We discussed the best-performing donor-acceptor combinations in detail and proposed recommended donor-acceptor pairs from a molecular design perspective. Furthermore, we performed a correlation analysis between calculated and experimental rISC rate constants to validate our computational methodology. Finally, we explored the influence of different linkers on molecular properties within the same donor-acceptor combinations.
1. Jeršek, M.; Jovanovski, G.; Boev, B.; Makreski, P. Intriguing Minerals: Corundum in the World of Rubies and Sapphires with Special Attention to Macedonian Rubies. ChemTexts 2021, 7(3), 19.
2. Han, Y.; Bai, L.; Lin, J.; Ding, X.; Xie, L.; Huang, W. Diarylfluorene-Based Organic Semiconductor Materials toward Optoelectronic Applications. Adv. Funct. Mater. 2021, 31(47), 2105092.
3. Tang, C. W.; Vanslyke, S. A. Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987, 51(12), 913–915.
4. Tang, C. W.; Vanslyke, S. A.; Chen, C. H. Electroluminescence of Doped Organic Thin Films. J. Appl. Phys. 1989, 65(9), 3610–3616.
5. Baldo, M. A.; O’brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices. Nature 1998, 395(6698), 151–154.
6. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Very High-Efficiency Green Organic Light-Emitting Devices Based on Electrophosphorescence. Appl. Phys. Lett. 1999, 75(1), 4–6.
7. Wang, Q.; Lucas, F.; Quinton, C.; Qu, Y. K.; Rault-Berthelot, J.; Jeannin, O.; Yang, S. Y.; Kong, F. C.; Kumar, S.; Liao, L. S.; Poriel, C.; Jiang, Z. Q. Evolution of Pure Hydrocarbon Hosts: Simpler Structure, Higher Performance and Universal Application in RGB Phosphorescent Organic Light-Emitting Diodes. Chem. Sci. 2020, 11(19), 4887–4894.
8. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492(7428), 234–238.
9. Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Efficient Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence. Nat. Photonics 2014, 8(4), 326–332.
10. Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; Murata, Y.; Adachi, C. Purely Organic Electroluminescent Material Realizing 100% Conversion from Electricity to Light. Nat. Commun. 2015, 6(1), 8476.
11. Wu, T. L.; Huang, M. J.; Lin, C. C.; Huang, P. Y.; Chou, T. Y.; Chen-Cheng, R. W.; Lin, H. W.; Liu, R. S.; Cheng, C. H. Diboron Compound-Based Organic Light-Emitting Diodes with High Efficiency and Reduced Efficiency Roll-Off. Nat. Photonics. 2018, 12(4), 235–240.
12. Kotadiya, N. B.; Blom, P. W. M.; Wetzelaer, G. J. A. H. Efficient and Stable Single-Layer Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Nat. Photonics. 2019, 13(11), 765–769.
13. El-Sayed, M. A. Spin-Orbit Coupling and the Radiationless Processes in Nitrogen Heterocyclics. J. Chem. Phys. 1963, 38(12), 2834–2838.
14. Diesing, S.; Zhang, L.; Zysman-Colman, E.; Samuel, I. D. W. A Figure of Merit for Efficiency Roll-off in TADF-Based Organic LEDs. Nature 2024, 627(8005), 747–753.
15. Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28(14), 2777–2781.
16. Tanaka, H.; Oda, S.; Ricci, G.; Gotoh, H.; Tabata, K.; Kawasumi, R.; Beljonne, D.; Olivier, Y.; Hatakeyama, T. Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew. Chem. Int. Ed. 2021, 60(33), 17910–17914.
17. Kaji, H.; Shizu, K. Quantitative Prediction of Rate Constants and Its Application to Organic Emitters. Nat. Commun. 2024, 15(1), 4723.
18. Li, Y.; Song, Y.; Zhang, K.; Xiu, Y.; Wang, P.; Tian, M.; He, L. Space-Confined through-Space Charge-Transfer Emitters Based on CN-Substituted Fluorene Acceptors: Design, Synthesis, and Thermally-Activated Delayed Fluorescence. Dyes. Pigm. 2023, 219, 111572.
19. Chen, X.-L.; Jia, J.-H.; Yu, R.; Liao, J.-Z.; Yang, M.-X.; Lu, C.-Z. Combining Charge-Transfer Pathways to Achieve Unique Thermally Activated Delayed Fluorescence Emitters for High-Performance Solution-Processed, Non-Doped Blue OLEDs. Angew. Chem. 2017, 129(47), 15202–15205.
20. Wang, X.; Wang, S.; Lv, J.; Shao, S.; Wang, L.; Jing, X.; Wang, F. Through-Space Charge Transfer Hexaarylbenzene Dendrimers with Thermally Activated Delayed Fluorescence and Aggregation-Induced Emission for Efficient Solution-Processed OLEDs. Chem. Sci. 2019, 10(10), 2915–2923.
21. Xue, Q.; Xie, G. Thermally Activated Delayed Fluorescence beyond Through-Bond Charge Transfer for High-Performance OLEDs. Adv. Opt. Mater. 2021, 9(14), 2002204.
22. Yang, S. Y.; Qu, Y. K.; Liao, L. S.; Jiang, Z. Q.; Lee, S. T. Research Progress of Intramolecular π-Stacked Small Molecules for Device Applications. Adv. Mater. 2022, 34(22), 2104125.
23. Yin, C.; Zhang, D.; Zhang, Y.; Lu, Y.; Wang, R.; Li, G.; Duan, L. High-Efficiency Narrow-Band Electro-Fluorescent Devices with Thermally Activated Delayed Fluorescence Sensitizers Combined through-Bond and through-Space Charge Transfers. CCS Chemistry 2020, 2(4), 1268–1277.
24. Zhang, P.; Zeng, J.; Guo, J.; Zhen, S.; Xiao, B.; Wang, Z.; Zhao, Z.; Tang, B. Z. New Aggregation-Induced Delayed Fluorescence Luminogens with through-Space Charge Transfer for Efficient Non-Doped OLEDs. Front. Chem. 2019, 7, 199.
25. Peng, C. C.; Yang, S. Y.; Li, H. C.; Xie, G. H.; Cui, L. S.; Zou, S. N.; Poriel, C.; Jiang, Z. Q.; Liao, L. S. Highly Efficient Thermally Activated Delayed Fluorescence via an Unconjugated Donor–Acceptor System Realizing EQE of Over 30%. Adv. Mat. 2020, 32(48), 2003885.
26. Yang, S. Y.; Wang, Y. K.; Peng, C. C.; Wu, Z. G.; Yuan, S.; Yu, Y. J.; Li, H.; Wang, T. T.; Li, H. C.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S. Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. J. Am. Chem. Soc. 2020, 142(41), 17756–17765.
27. Li, K.; Zhu, Y.; Yao, B.; Chen, Y.; Deng, H.; Zhang, Q.; Zhan, H.; Xie, Z.; Cheng, Y. Rotation-Restricted Thermally Activated Delayed Fluorescence Compounds for Efficient Solution-Processed OLEDs with EQEs of up to 24.3% and Small Roll-Off. ChemicalComm 2020, 56(44), 5957–5960.
28. Song, Y.; Li, Y.; Yu, R.; Zhang, K.; He, L. Regulating the Distance Between Donor and Acceptor in Space-Confined Through-Space Charge Transfer Emitters for Fast Radiative Decays and High-Efficiency Organic Light-Emitting Diodes With Low Efficiency Roll-Offs. Adv. Opt. Mater. 2023, 11(18), 2300432.
29. Ren, H.; Song, Y.; Yu, R.; Tian, M.; He, L. Through-Space Charge-Transfer Emitters Featuring High Radiative Decay Rates for Efficient Organic Light-Emitting Diodes. Dyes. Pigm. 2022, 204, 110389.
30. Wang, J.; Miao, J.; Jiang, C.; Luo, S.; Yang, C.; Li, K. Engineering Intramolecular π-Stacking Interactions of Through-Space Charge-Transfer TADF Emitters for Highly Efficient OLEDs with Improved Color Purity. Adv. Opt. Mater. 2022, 10(20), 2201071.
31. Chen, X. K.; Bakr, B. W.; Auffray, M.; Tsuchiya, Y.; Sherrill, C. D.; Adachi, C.; Bredas, J. L. Intramolecular Noncovalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF). J. Phys. Chem. Lett. 2019, 10(12), 3260–3268.
32. Yang, Z.; Ge, X.; Li, W.; Mao, Z.; Chen, X.; Xu, C.; Long Gu, F.; Zhang, Y.; Zhao, J.; Chi, Z. From Para to Ortho: Incarnating Conventional TADF Molecules into AIE-TADF Molecules for Highly-Efficient Non-Doped OLEDs. J. Chem. Eng. 2022, 442, 136219.
33. Shi, Y. Z.; Wu, H.; Wang, K.; Yu, J.; Ou, X. M.; Zhang, X. H. Recent Progress in Thermally Activated Delayed Fluorescence Emitters for Nondoped Organic Light-Emitting Diodes. Chem. Sci. 2022, 13(13), 3625–3651.
34. Tsujimoto, H.; Ha, D. G.; Markopoulos, G.; Chae, H. S.; Baldo, M. A.; Swager, T. M. Thermally Activated Delayed Fluorescence and Aggregation Induced Emission with Through-Space Charge Transfer. J. Am. Chem. Soc. 2017, 139(13), 4894–4900.
35. Tang, X.; Cui, L. S.; Li, H. C.; Gillett, A. J.; Auras, F.; Qu, Y. K.; Zhong, C.; Jones, S. T. E.; Jiang, Z. Q.; Friend, R. H.; Liao, L. S. Highly Efficient Luminescence from Space-Confined Charge-Transfer Emitters. Nat. Mater. 2020, 19(12), 1332–1338.
36. Wada, Y.; Nakagawa, H.; Matsumoto, S.; Wakisaka, Y.; Kaji, H. Organic Light Emitters Exhibiting Very Fast Reverse Intersystem Crossing. Nat. Photonics 2020, 14(10), 643–649.
37. Zhao, Z.; Zeng, C.; Peng, X.; Liu, Y.; Zhao, H.; Hua, L.; Su, S. J.; Yan, S.; Ren, Z. Tuning Intramolecular Stacking of Rigid Heteroaromatic Compounds for High-Efficiency Deep-Blue Through-Space Charge-Transfer Emission. Angew. Chem. Int. Ed. 2022, 134(39), e202210864.
38. Zuo, P.; Yang, Y. J.; Liu, F. M.; Wu, J. R.; Zheng, Q.; Yuan, H. T.; Liao, L. S.; Zhou, D. Y.; Jiang, Z. Q. Achieving Deep-Blue Through-Space Charge-Transfer Emitter by Designing the Donor-π-Donor-σ-Acceptor Molecular Structure. Adv. Opt. Mater. 2024, 2400860.
39. Meng, G.; Dai, H.; Wang, Q.; Zhou, J.; Fan, T.; Zeng, X.; Wang, X.; Zhang, Y.; Yang, D.; Ma, D.; Zhang, D.; Duan, L. High-Efficiency and Stable Short-Delayed Fluorescence Emitters with Hybrid Long- and Short-Range Charge-Transfer Excitations. Nat. Commun. 2023, 14(1), 2394.
40. Ma, F.; Cheng, Y.; Zheng, Y.; Ji, H.; Hasrat, K.; Qi, Z. Rational Design of Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced Emission Employing Combined Charge Transfer Pathways for Fabricating Efficient Non-Doped OLEDs. J. Mater. Chem. C. 2019, 7(30), 9413-9422.
41. Huang, T.; Wang, Q.; Xiao, S.; Zhang, D.; Zhang, Y.; Yin, C.; Yang, D.; Ma, D.; Wang, Z.; Duan, L. Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Through-Space Charge Transfers. Angew. Chem. Int. Ed. 2021, 133(44), 23964-23969.
42. Madushani, B.; Mamada, M.; Goushi, K.; Nguyen, T. B.; Nakanotani, H.; Kaji, H.; Adachi, C. Multiple Donor–Acceptor Design for Highly Luminescent and Stable Thermally Activated Delayed Fluorescence Emitters. Sci. Rep. 2023, 13(1), 7644.
43. Zhang, L.; Cheah, K. W. Thermally Activated Delayed Fluorescence Host for High Performance Organic Light-Emitting Diodes. Sci. Rep. 2018, 8(1), 8832.
44. Park, I. S.; Matsuo, K.; Aizawa, N.; Yasuda, T. High-Performance Dibenzoheteraborin-Based Thermally Activated Delayed Fluorescence Emitters: Molecular Architectonics for Concurrently Achieving Narrowband Emission and Efficient Triplet–Singlet Spin Conversion. Adv. Funct. Mater. 2018, 28(34), 1802031.
45. Sudheendran Swayamprabha, S.; Dubey, D. K.; Shahnawaz; Yadav, R. A. K.; Nagar, M. R.; Sharma, A.; Tung, F. C.; Jou, J. H. Approaches for Long Lifetime Organic Light Emitting Diodes. Adv. Sci. 2021, 8(1), 2002254.
46. Wang, Q.; Aziz, H. Degradation of Organic/Organic Interfaces in Organic Light-Emitting Devices Due to Polaron-Exciton Interactions. ACS Appl. Mater. Interfaces. 2013, 5(17), 8733–8739.
47. Lee, J.; Jeong, C.; Batagoda, T.; Coburn, C.; Thompson, M. E.; Forrest, S. R. Hot Excited State Management for Long-Lived Blue Phosphorescent Organic Light-Emitting Diodes. Nat. Commun. 2017, 8(1), 15566.
48. Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov. 2004, 3(11), 935–949.
49. Lionta, E.; Spyrou, G.; Vassilatis, D. K.; Cournia, Z. Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances. Curr. Top. Med. Chem. 2024, 14(16), 1923-1938.
50. Lin, X.; Li, X.; Lin, X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules. 2020, 25(6), 1375.
51. Yang, K.; Setyawan, W.; Wang, S.; Buongiorno Nardelli, M.; Curtarolo, S. A Search Model for Topological Insulators with High-Throughput Robustness Descriptors. Nat. Mater. 2012, 11(7), 614–619.
52. Carrete, J.; Li, W.; Mingo, N.; Wang, S.; Curtarolo, S. Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling. Phys. Rev. X 2014, 4(1), 011019.
53. Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-Bedolla, C.; Sánchez-Carrera, R. S.; Gold-Parker, A.; Vogt, L.; Brockway, A. M.; Aspuru-Guzik, A. The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid. J. Phys. Chem. Lett. 2011, 2(17), 2241–2251.
54. Shin, Y.; Liu, J.; Quigley, J. J.; Luo, H.; Lin, X. Combinatorial Design of Copolymer Donor Materials for Bulk Heterojunction Solar Cells. ACS Nano 2014, 8(6), 6089–6096.
55. Hachmann, J.; Olivares-Amaya, R.; Jinich, A.; Appleton, A. L.; Blood-Forsythe, M. A.; Seress, L. R.; Román-Salgado, C.; Trepte, K.; Atahan-Evrenk, S.; Er, S.; Shrestha, S.; Mondal, R.; Sokolov, A.; Bao, Z.; Aspuru-Guzik, A. Lead Candidates for High-Performance Organic Photovoltaics from High-Throughput Quantum Chemistry-the Harvard Clean Energy Project. Energy Environ Sci. 2014, 7(2), 698–704.
56. Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M. A.; Chae, H. S.; Einzinger, M.; Ha, D. G.; Wu, T.; Markopoulos, G.; Jeon, S.; Kang, H.; Miyazaki, H.; Numata, M.; Kim, S.; Huang, W.; Hong, S. I.; Baldo, M.; Adams, R. P.; Aspuru-Guzik, A. Design of Efficient Molecular Organic Light-Emitting Diodes by a High-Throughput Virtual Screening and Experimental Approach. Nat. Mater. 2016, 15(10), 1120–1127.
57. Turcani, L.; Berardo, E.; Jelfs, K. E. Stk: A Python Toolkit for Supramolecular Assembly. J. Comput. Chem. 2018, 39(23), 1931–1942.
58. Turcani, L.; Tarzia, A.; Szczypiński, F. T.; Jelfs, K. E. Stk: An Extendable Python Framework for Automated Molecular and Supramolecular Structure Assembly and Discovery. J. Chem. Phys. 2021, 154(21).
59. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965,140(4A), A1133.
60. Autschbach, J. Charge-Transfer Excitations and Time-Dependent Density Functional Theory: Problems and Some Proposed Solutions. ChemPhysChem 2009, 10(11), 1757–1760.
61. Dreuw, A.; Weisman, J. L.; Head-Gordon, M. Long-Range Charge-Transfer Excited States in Time-Dependent Density Functional Theory Require Non-Local Exchange. J. Chem. Phys. 2003, 119(6), 2943–2946.
62. Perdew, J. P. Jacob’s Ladder of Density Functional Approximations for the Exchange-Correlation Energy. In: AIP Conference Proceedings. AIP, 2003, 1–20.
63. Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98(2), 1372–1377.
64. Kurth, S.; Perdew, J. P.; Blaha, P. Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGAs, and Meta-GGAs. Int. J. Quantum Chem. 1999, 75(4–5), 889–909.
65. Grimme, S. Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. J. Chem. Phys. 2006, 124 (3).
66. Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical review B. 1981, 23(10), 5048.
67. Lee, C.; Yang, Weitao; Parr, R. G. Development of the Colic-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical review B. 1988, 37(2), 785.
68. Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical review A, 1988, 38(6), 3098.
69. Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110(13), 6158–6170.
70. Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393(1–3), 51–57.
71. Vydrov, O. A.; Scuseria, G. E. Assessment of a Long-Range Corrected Hybrid Functional. J. Chem. Phys. 2006, 125(23).
72. Chai, J. Da; Head-Gordon, M. Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. J. Chem. Phys. 2008, 128(8).
73. Chai, J. Da; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10(44), 6615–6620.
74. Sun, H.; Zhong, C.; Brédas, J. L. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence. J. Chem. Theory Comput. 2015, 11(8), 3851–3858.
75. Sun, H.; Autschbach, J. Electronic Energy Gaps for π-Conjugated Oligomers and Polymers Calculated with Density Functional Theory. J. Chem. Theory Comput. 2014, 10(3), 1035–1047.
76. Sun, H.; Zhang, S.; Sun, Z. Applicability of Optimal Functional Tuning in Density Functional Calculations of Ionization Potentials and Electron Affinities of Adenine-Thymine Nucleobase Pairs and Clusters. Phys. Chem. Chem. Phys. 2015, 17(6), 4337–4345.
77. Sun, H.; Ryno, S.; Zhong, C.; Ravva, M. K.; Sun, Z.; Körzdörfer, T.; Brédas, J. L. Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)-Tuned Range-Separated Density Functional Approach. J. Chem. Theory Comput. 2016, 12(6), 2906–2916.
78. Proof that∂ E∂ n i= ε in density-functional theory. Physical Review B, 1978, 18(12), 7165.
79. Jacquemin, D.; Wathelet, V.; Perpète, E. A.; Adamo, C. Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. J. Chem. Theory Comput. 2009, 5(9), 2420–2435.
80. Hall, D.; Sancho-García, J. C.; Pershin, A.; Beljonne, D.; Zysman-Colman, E.; Olivier, Y. Benchmarking DFT Functionals for Excited-State Calculations of Donor−Acceptor TADF Emitters: Insights on the Key Parameters Determining Reverse Inter-System Crossing. J. Phys. Chem. A 2023, 127(21), 4743-4757.
81. Wu, C.; Liu, W.; Li, K.; Cheng, G.; Xiong, J.; Teng, T.; Che, C. M.; Yang, C. Face-to-Face Orientation of Quasiplanar Donor and Acceptor Enables Highly Efficient Intramolecular Exciplex Fluorescence. Angew. Chem. Int. Ed. 2021, 60(8), 3994-3998.
82. Yu, M.; Zhu, X.; Zeng, J.; Liu, H.; Huang, R.; Zhuang, Z.; Shen, P.; Zhao, Z.; Tang, B. Z. Comparative Study on the Impact of Through-Space Charge Transfer over the Electroluminescence Performance of Delayed Fluorescence Molecules. J. Mater. Chem. C. 2021, 9(41), 14808-14814.
83. Lee, D. R.; Choi, J. M.; Lee, C. W.; Lee, J. Y. Ideal Molecular Design of Blue Thermally Activated Delayed Fluorescent Emitter for High Efficiency, Small Singlet-Triplet Energy Splitting, Low Efficiency Roll-off, and Long Lifetime. ACS Appl. Mater. Interfaces 2016, 8(35), 23190–23196.
84. Ivanova, G.; Bozova, N.; Petkov, N.; An, C.; Hu, B.; Mutovska, M.; Konstantinov, K.; Zagranyarski, Y.; Videva, V.; Yordanova, A.; Baumgarten, M.; Ivanova, A. Benchmarking of Density Functionals for the Description of Optical Properties of Newly Synthesized π-Conjugated TADF Blue Emitters. Chem. Eur. J. 2022, 28(16), e202104411.
85. Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-XTB - An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory. Comput. 2019, 15 (3), 1652–1671.
86. Plasser, F. TheoDORE: A Toolbox for a Detailed and Automated Analysis of Electronic Excited State Computations. J. Chem. Phys. 2020, 152(8).
87. Gao, X.; Bai, S.; Fazzi, D.; Niehaus, T.; Barbatti, M.; Thiel, W. Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods. J. Chem. Theory. Comput. 2017, 13 (2), 515–524.
88. Gibson, J.; Monkman, A. P.; Penfold, T. J. The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules. ChemPhysChem 2016, 2956–2961.
89. Etherington, M. K.; Gibson, J.; Higginbotham, H. F.; Penfold, T. J.; Monkman, A. P. Revealing the Spin-Vibronic Coupling Mechanism of Thermally Activated Delayed Fluorescence. Nat. Commun. 2016, 7(1), 13680.
90. Aizawa, N.; Harabuchi, Y.; Maeda, S.; Pu, Y. J. Kinetic Prediction of Reverse Intersystem Crossing in Organic Donor–Acceptor Molecules. Nat. Commun. 2020, 11(1), 3909.
91. Documentation - SCM. https://www.scm.com/doc/Tutorials/OpticalPropertiesElectronicExcitations/OptimizingTADFEmission.html (accessed 2024-07-18).
92. Li, J.; Tian, T.; Guo, D.; Li, T.; Zhang, M.; Zhang, H. Importance of Spin-Triplet Excited-State Character in the Reverse Intersystem Crossing Process of Spiro-Based TADF Emitters. J. Mater. Chem. C. 2023, 11(18), 6119–6129.
93. Beljonne, D.; Shuai, Z.; Pourtois, G.; Bredas, J. L. Spin-Orbit Coupling and Intersystem Crossing in Conjugated Polymers: A Configuration Interaction Description. J. Phys. Chem. A. 2001, 105(15), 3899–3907.
94. Schmidt, K.; Brovelli, S.; Coropceanu, V.; Beljonne, D.; Cornil, J.; Bazzini, C.; Caronna, T.; Tubino, R.; Meinardi, F.; Shuai, Z.; Brédas, J. L. Intersystem Crossing Processes in Nonplanar Aromatic Heterocyclic Molecules. J. Phys. Chem. A 2007, 111(42), 10490-10499.
95. Clavería-Cádiz, F.; Guajardo-Maturana, R.; Muñoz-Castro, Á.; Kuznetsov, A. Unraveling the Delayed Fluorescence Mechanism of Copper(I) Halide-Phosphine Emitters from DFT Calculations. Results Chem. 2023, 6, 101201
96. Banerjee, M.; Anoop, A. Exploring the Theoretical Foundations of Thermally Activated Delayed Fluorescence (TADF) Emission: A Comprehensive TD-DFT Study on Phenothiazine Systems. Chem. Eur. J. 2024, 30(20), e202304206.
97. Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. All-Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Nat. Rev. Mater. 2018, 3(4), 1-20.
98. Cai, X.; Su, S. J. Marching Toward Highly Efficient, Pure-Blue, and Stable Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes. Adv. Func. Mater. 2018, 28(43), 1802558.
99. Dias, F. B.; Penfold, T. J.; Monkman, A. P. Photophysics of Thermally Activated Delayed Fluorescence Molecules. Methods and Applications in Fluorescence. 2017, 5(1), 012001.
100. Adachi, J.; Okada, H. TADF and Hyperfluorescence. Advanced Display Technology: Next Generation Self-Emitting Displays. 2021, 39-65.
101. Song, Y.; Tian, M.; Yu, R.; He, L. Through-Space Charge-Transfer Emitters Developed by Fixing the Acceptor for High-Efficiency Thermally Activated Delayed Fluorescence. ACS Appl. Mater. Interfaces 2021, 13(50), 60269-60278.
102. Yang, S. Y.; Feng, Z. Q.; Fu, Z.; Zhang, K.; Chen, S.; Yu, Y. J.; Zou, B.; Wang, K.; Liao, L. S.; Jiang, Z. Q. Highly Efficient Sky-Blue π-Stacked Thermally Activated Delayed Fluorescence Emitter with Multi-Stimulus Response Properties. Angew. Chem. Int. Ed. 2022, 134(34), e202206861.
103. Feng, Z. Q.; Yang, S. Y.; Kong, F. C.; Qu, Y. K.; Meng, X. Y.; Yu, Y. J.; Zhou, D. Y.; Jiang, Z. Q.; Liao, L. S. Indirect Control of Donor/Acceptor Interactions for Highly Efficient Space-Confined Thermally Activated Delayed Fluorescence Emitters. Adv. Funct. Mater. 2023, 33(6), 2209708.
104. Lee, H. L.; Lee, K. H.; Lee, J. Y. Transformation from Nonthermally Activated Delayed Fluorescence Molecules to Thermally Activated Delayed Fluorescence Molecules. Adv. Opt. Mater. 2020, 8(20), 2001025.
105. Cho, E.; Hong, M.; Coropceanu, V.; Brédas, J. L. The Role of Intermolecular Interactions on the Performance of Organic Thermally Activated Delayed Fluorescence (TADF) Materials. Adv. Opt. Mater. 2021, 9(14), 2002135.
106. Kumar, S.; Tourneur, P.; Adsetts, J. R.; Wong, M. Y.; Rajamalli, P.; Chen, D.; Lazzaroni, R.; Viville, P.; Cordes, D. B.; Slawin, A. M. Z.; Olivier, Y.; Cornil, J.; Ding, Z.; Zysman-Colman, E. Photoluminescence and Electrochemiluminescence of Thermally Activated Delayed Fluorescence (TADF) Emitters Containing Diphenylphosphine Chalcogenide-Substituted Carbazole Donors. J. Mater. Chem. C. 2022, 10(12), 4646-4667.
107. Wang, X.; Shi, H.; Ma, H.; Ye, W.; Song, L.; Zan, J.; Yao, X.; Ou, X.; Yang, G.; Zhao, Z.; Singh, M.; Lin, C.; Wang, H.; Jia, W.; Wang, Q.; Zhi, J.; Dong, C.; Jiang, X.; Tang, Y.; Xie, X.; Yang, Y.; Wang, J.; Chen, Q.; Wang, Y.; Yang, H.; Zhang, G.; An, Z.; Liu, X.; Huang, W. Organic Phosphors with Bright Triplet Excitons for Efficient X-Ray-Excited Luminescence. Nat. Photonics 2021, 15(3), 187-192.
108. Liu, X. W.; Zhao, W.; Wu, Y.; Meng, Z.; He, Z.; Qi, X.; Ren, Y.; Yu, Z. Q.; Tang, B. Z. Photo-Thermo-Induced Room-Temperature Phosphorescence through Solid-State Molecular Motion. Nat. Commun. 2022, 13(1), 3887.
109. Jian, M.; Song, Z.; Chen, X.; Zhao, J.; Xu, B.; Chi, Z. Afterglows from the Indolocarbazole Families. J. Chem. Eng. 2022, 429, 132346.
110. Jia, X.; Shao, C.; Bai, X.; Zhou, Q.; Wu, B.; Wang, L.; Yue, B.; Zhu, H.; Zhu, L. Photoexcitation-Controlled Self-Recoverable Molecular Aggregation for Flicker Phosphorescence. Proc. Natl. Acad. Sci. 2019, 116(11), 4816-4821.
111. Wang, T.; Hu, Z.; Nie, X.; Huang, L.; Hui, M.; Sun, X.; Zhang, G. Thermochromic Aggregation-Induced Dual Phosphorescence via Temperature-Dependent Sp 3-Linked Donor-Acceptor Electronic Coupling. Nat. Commun. 2021, 12(1), 1364.
112. Wang, T.; De, J.; Wu, S.; Gupta, A. K.; Zysman-Colman, E. Thermally Activated and Aggregation-Regulated Excitonic Coupling Enable Emissive High-Lying Triplet Excitons. Angew. Chem. Int. Ed. 2022, 61(33), e202206681.
113. Li, M.; Xie, W.; Cai, X.; Peng, X.; Liu, K.; Gu, Q.; Zhou, J.; Qiu, W.; Chen, Z.; Gan, Y.; Su, S. J. Molecular Engineering of Sulfur-Bridged Polycyclic Emitters Towards Tunable TADF and RTP Electroluminescence. Angew. Chem. Int. Ed. 2022, 61(35), e202209343.
114. Chong, K. C.; Chen, C.; Zhou, C.; Chen, X.; Ma, D.; Bazan, G. C.; Chi, Z.; Liu, B. Structurally Resemblant Dopants Enhance Organic Room-Temperature Phosphorescence. Adv. Mater. 2022, 34(29), 2201569.
115. Lu, T.; Chen, Q. Independent Gradient Model Based on Hirshfeld Partition: A New Method for Visual Study of Interactions in Chemical Systems. J. Comput. Chem. 2022, 43(8), 539-555.
116. Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33(5), 580-592.
117. Im, Y.; Kim, M.; Cho, Y. J.; Seo, J. A.; Yook, K. S.; Lee, J. Y. Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. Chem. Mater. 2017, 29(5), 1946-1963.