簡易檢索 / 詳目顯示

研究生: 許家豪
Hsu, Chia-Hao
論文名稱: 研究兩個與 Notch 相關基因, mind bomb 與 nicastrin, 在 斑馬魚早期發育上所扮演的角色
Study the roles of two Notch related genes, mind bomb and nicastrin, in zebrafish early development
指導教授: 江運金
Jiang, Yun-Jin
莊永仁
Chuang, Yung-Jen
口試委員: 陳曜鴻
Chen, Yau-Hung
劉薏雯
LIU, YI-WEN
鄭邑荃
Cheng, Yi-Chuan
林頌然
Lin, Sung-Jan
許淑娟
Sheu, Shwu-Jiuan
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 148
中文關鍵詞: 發育肌節黑色素細胞粒線體
外文關鍵詞: somite, melanocyte, foxc1a, nicastrin
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這個研究中,我們試著去瞭解兩個與Notch相關基因(mib與nicastrin)在斑馬魚早期發育中所扮演的角色。在mib的研究中,我們採用mibnn2002來作為研究材料。因為它具有過去mib突變種所沒有的特殊性狀。這樣的性狀讓我們有機會瞭解mib未知的功能。然而,我們發現這個突變種有一個9.6 Mbp大小的基因片段缺失,其中包含了foxc1a與mib基因。mib基因的遺失導致其呈現與mibtfi91相似的分子性狀,包含her4表現量下降、神經元細胞些微增加以及冷敏感性的dlc同步表現異常。雖然在這個研究中,我們沒有藉由研究此突變種的特殊性狀找到mib的新功能,我們卻發現了foxc1a只在早期肌節特化上是必要的,較晚生成的肌節則不用,這點發現修正了早先對foxc1a在肌節特化上功能上的結論(過去認為foxc1a基因是早期跟晚期的肌節發育皆必要的基因)。這個發現也與新近由foxc1a變異種研究所得的結論吻合,該研究發現foxc1a基因是早期的肌節發育所必需的。而在nicastrin的研究中,我們發現在胚胎黑色素細胞中,γ-secretase需要Nicastrin來執行它的功能。當nicastrin的mRNA缺乏時,會導致黑色素細胞死亡,視網膜色素上皮退化與視覺感光細胞退化。我們發現黑色素小體在黑色素細胞中的成熟需要nicastrin。 我們猜測不成熟的黑色素小體中的Tyrosinase下游產物,可能會導致我們觀察到的粒線體結構異常與黑色素細胞壞死。利用藥物抑制Tyrosinase,其結果也支持這樣的想法。除了黑色素細胞外,我們也發現自由基抑制藥物,在存在視網膜色素上皮的情況下,可以在一定程度上緩解視覺感光細胞在nicastrin突變種中的退化現象。簡要來說,我們發現foxc1a的表現是mibnn2002突變種早期的肌節特化需要的,但其表現與否並不影響mibnn2002突變種晚期的肌節特化;黑色素細胞中的黑色素小體成熟需要nicastrin的表現。缺乏nicastrin會導致黑色素細胞產生Tyrosinase介導的粒線體腫脹與黑色素細胞壞死。


    Here, we examined the function of two Notch related genes, mib and nicastrin, in zebrafish early development. In the study of mib, its function was studied by the mibnn2002 mutant, which showed distinct phenotypes from previous mib mutants and might reveal novel function of mib. However, a 9.6 Mbp chromosome deletion was found in mibnn2002, which includes foxc1a and mib. The deletion of mib results in the down-regulation of her4, neuronal cell slighly increase and cold sensitive dlc synchronization defect which mimics the molecular phenotypes of mibtfi91. Although we did not identify a new function of mib through studying its distinct phenotypes, we found that foxc1a is only required for the specification of early somites, but not later somites. The finding rectifies previous conclusion, which suggests that foxc1a is required for not only early somitogenesis but also late somitogenesis. This finding is also echoed by a recent report, which showed that foxc1a is required for early somitogenesis. In the study of nicastrin, we found that Nicastrin is required for the function of γ-secretase in the embryonic melanocytes. The deficiency of nicastrin transcript could lead to depigmentation, retinal pigment epithelium degeneration and photoreceptor degeneration. nicastrin was found to be required for the maturation of melanosomes in the melanocytes. Mitochondria malformation and melanocyte necrosis were suppressed by the treatment of Tyrosinase inhibitor. In contrast to melanocytes, ROS inhibitor, in addition to the existence of RPE, was required to partially rescue the photoreceptors in the nicastrin mutant. In short, we found that the expression of foxc1a in the PSM is only required for early somite specification, but not late somite specification in the mibnn2002 mutant; The expression of nicastrin is required for melanosome maturation in the melanocytes. The deficient of nicastrin transcript in the melanocyte could lead to Tyrosinase mediated mitochondria swelling and cell necrosis.

    List of Figures............................................................................................................3 List of abbreviations..................................................................................................5 CHAPTER I: Introduction.........................................................................................7 1.1. Zebrafish.........................................................................................................7 1.2. Notch..............................................................................................................8 1.3. Mind bomb (Mib) and somite.......................................................................10 1.4. Somite formation..........................................................................................11 1.5. Nicastrin, γ-secretase and melanocytes........................................................13 1.6. Depigmentation and its potential mechanisms.............................................15 1.7. Study new function of Mib and functions of nicastrin in zebrafish early development.................................................................................................17 CHAPTER II: Materials and Methods - mib nn2002 ....................................................19 2.1 Zebrafish........................................................................................................19 2.2 foxc1a rescue and tp53 knockdown experiments..........................................20 2.3 Whole mount in situ hybridization (WISH)..................................................20 2.4 Tunel and Acridine Orange staining..............................................................21 2.5 γ-H2AX staining............................................................................................21 2.6 Genomic PCR and RT-PCR...........................................................................22 2.7 RNA preparation for Illumina RNA-seq.......................................................22 CHAPTER III: Results-mib nn2002 ..............................................................................23 3.1 mib nn2002 showed similar Notch molecular phenotypes, but distinct morphological phenotypes.............................................................................23 3.2 mib nn2002 mutants showed defects in somite formation without disrupting Notch signaling in the PSM...........................................................................29 3.3 mib nn2002 showed a specification defect in the anterior somites.....................32 3.4 foxc1a is not essential for later somite specification and boundary formation .................................................................................................................39 3.5 mib nn2002 showed tp53 up-regulation and an increase of apoptosis since 17 hpf .................................................................................................................41 3.6 mib gene is deleted in mib nn2002 mutants.........................................................45 3.7 mib nn2002 is a chromosome arm deleted mutant, which includes the loci of mib and foxc1a...............................................................................................47 3.8 The early somite specification defect can be partially rescued by foxc1a overexpression, while the apoptosis was partially reduced by tp53 knockdown....................................................................................................55 CHAPTER IV: Discussion-mib nn2002 ........................................................................60 4.1 mib nn2002 mutant is a chromosome-deleted mutant, including mib and foxc1a ......................................................................................................................60 4.2 The deletion could be a result of ENU mutagenesis.....................................60 4.3 Chromosome truncated mutant could be a powerful tool in assisting genome assembly........................................................................................................61 4.4 foxc1a could only be required for early somites' specification, but not the late ones.........................................................................................................62 4.5 The function of Mib in the mib nn2002 and mib tfi91 may be complemented by the function of Mib2 in the PSM.........................................................................62 4.6 The deleted genes in the mib nn2002 mutant could be essential in maintaining genome stability.............................................................................................63 CHAPTER V: Methodology-nicastrin hi1384 ..............................................................65 5.1 Zebrafish........................................................................................................65 5.2 Genomic PCR and RT-PCR...........................................................................65 5.3 Live and WISH imaging................................................................................66 5.4 PCR-based chromosome walk.......................................................................66 5.5 Whole mount in situ hybridization................................................................66 5.6 nicastrin knockdown and mRNA rescue experiments..................................67 5.7 Section and Hematoxylin & Eosin staining...................................................67 5.8 Transmission electron microscope image......................................................68 5.9 Drug treatments.............................................................................................68 5.10 Statistics.......................................................................................................69 CHAPTER VI: Results-nicastrin hi1384 ......................................................................70 6.1 nicastrin hi1384 homozygotes showed hypopigmentation and curly up tail phenotypes.....................................................................................................70 6.2 GT2.0 virus insertion in the Intron 1 of nicastrin gene could lead to the down-regulation of nicastrin mRNA in the nicastrin hi1384 mutants...............72 6.3 nicastrin hi1384 mutants showed depigmentation phenotype instead of hypopigmentation..........................................................................................74 6.4 nicastrin hi1384 mutants showed retinal pigment epithelium and photoreceptor degeneration..................................................................................................80 6.5 Depigment and curly up tail phenotypes in nicastrin hi1384 mutants can be rescued by injecting nicastrin mRNA...........................................................84 6.6 A defect in melanosome maturation could lead to melanocyte necrosis in the nicastrin hi1384 mutants.....................................................................................88 6.7 The necrosis in the nicastrin hi1384 mutant could be a result of mitochondria damage...........................................................................................................95 6.8 The depigmentation phenotypes in the nicastrin hi1384 were Tyrosinasedependent..............................................................................................99 6.9 Down-regulating γ-secretase activity also induced Tyrosinase dependent depigmentation in the embryonic melanocytes...........................................106 6.10 In addition to Tyrosinase inhibitor, anti-oxidant is also required to protect the photoreceptors in the nicastrin hi1384 mutants.........................................112 CHAPTER VII: Discussion-nicastrin hi1384 .............................................................115 7.1 nicastrin hi1384 mutants showed Tyrosinase dependent mitochondria damage and cell death through impairing melanosome maturation.........................115 7.2 nicastrin was only temporarily required to prevent the curly up tail phenotype.....................................................................................................117 7.3 nicastrin transcript down-regulation could be a result of trans-activation defect...........................................................................................................118 7.4 Nicastrin is required for the function of γ-secretase in the melanocytes.....118 7.5 The down-regulation of γ-secretase's activity could lead to melanosome immaturation, mitochondria swelling and necrosis.....................................119 7.6 nicastrin deficiency triggers photoreceptor ROS stress via an unknown mechanism...................................................................................................120 7.7 nicastrin hi1384 mutant is a new Vitiligo disease model..................................121 7.8 Peventive Tyrosinase inhibitor administration could be a potential strategy in vitiligo prevention.......................................................................................123 7.9 Down-regulating γ-secretase activity and raising Tyrosinase activity is a potential treatment for patients suffered with melanoma............................124 7.10 The potential association of nicastrin and photoreceptor degeneration....125 Appendix I: The primers for mib nn2002 ....................................................................126 Appendix II: The truncated region in the mib nn2002 ................................................127 Appendix III: The offsprings of nicastrin hi1384 .......................................................128 Appendix IV: RT-PCR Primers used in nicastrin hi1384 ...........................................129 Appendix V: DAPT is able to induce somite boundary formation defect.............130 References.............................................................................................................132

    Abrams JM, White K, Fessler LI and Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117:29–43.
    Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD and Brown SDM (2008) ENU Mutagenesis, a Way Forward to Understand Gene Function. Annu Rev Genomics Hum Genet 9:49–69. doi: 10.1146/annurev.genom.9.081307.164224
    Albert DM, Wagoner MD, Pruett RC, Nordlund JJ and Lerner AB (1983) Vitiligo and disorders of the retinal pigment epithelium. Br J Ophthalmol 67:153–156.
    Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M and Hopkins N (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724.
    Andersson LS, Juras R, Ramsey DT, Eason-Butler J, Ewart S, Cothran G and Lindgren G (2008) Equine Multiple Congenital Ocular Anomalies maps to a 4.9 megabase interval on horse chromosome 6. BMC Genet 9:88. doi: 10.1186/1471-2156-9-88
    Appel B, Fritz A, Westerfield M, Grunwald DJ, Eisen JS and Riley BB (1999) Delta-mediated specification of midline cell fates in zebrafish embryos. Curr Biol 9:247–257. doi: 10.1016/S0960-9822(99)80113-4
    Arunachalam M, Raja M, Vijayakumar C, Malaiammal P and Mayden RL (2013) Natural History of Zebrafish (Danio rerio) in India. Zebrafish 10:1–14. doi: 10.1089/zeb.2012.0803
    Aster JC (2014) In brief: Notch signalling in health and disease. J Pathol 232:1–3. doi: 10.1002/path.4291
    Baltmr A, Lightman S and Tomkins-Netzer O (2016) Vogt–Koyanagi–Harada syndrome – current perspectives. Clin Ophthalmol Auckl NZ 10:2345–2361. doi: 10.2147/OPTH.S94866
    Bayer ML and Chiu YE (2016) Successful Treatment of Vitiligo Associated with Vogt-Koyanagi-Harada Disease. Pediatr Dermatol 34:204–205. doi: 10.1111/pde.13044
    Bellinger FP, Raman AV, Reeves MA and Berry MJ (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22. doi: 10.1042/BJ20090219
    Berman SB and Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137.
    Böhm S, Jin H, Hughes SM, Roberts RG and Hinits Y (2008) Dystrobrevin and dystrophin family gene expression in zebrafish. Gene Expr Patterns GEP 8:71–78. doi: 10.1016/j.modgep.2007.10.004
    Burgess R, Rawls A, Brown D, Bradley A and Olson EN (1996) Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384:570–573. doi: 10.1038/384570a0
    Burgoyne T, O’Connor MN, Seabra MC, Cutler DF and Futter CE (2015) Regulation of melanosome number, shape and movement in the zebrafish retinal pigment epithelium by OA1 and PMEL. J Cell Sci 128:1400–1407. doi: 10.1242/jcs.164400
    Cabiscol E, Piulats E, Echave P, Herrero E and Ros J (2000) Oxidative Stress Promotes Specific Protein Damage inSaccharomyces cerevisiae. J Biol Chem 275:27393–27398.
    Chaisson MJP, Wilson RK and Eichler EE (2015) Genetic variation and the de novo assembly of human genomes. Nat Rev Genet 16:627–640. doi: 10.1038/nrg3933
    Chen F, Tandon A, Sanjo N, Gu Y-J, Hasegawa H, Arawaka S, Lee FJS, Ruan X, Mastrangelo P, Erdebil S et al. (2003) Presenilin 1 and Presenilin 2 Have Differential Effects on the Stability and Maturation of Nicastrin in Mammalian Brain. J Biol Chem 278:19974–19979. doi: 10.1074/jbc.M210049200
    Cheng Y-L, Choi Y, Sobey CG, Arumugam TV and Jo D-G (2015) Emerging roles of the γ-secretase-notch axis in inflammation. Pharmacol Ther 147:80–90. doi: 10.1016/j.pharmthera.2014.11.005
    Chorev M and Carmel L (2012) The Function of Introns. Front Genet 3:55. doi: 10.3389/fgene.2012.00055
    Clancey LF, Beirl AJ, Linbo TH and Cooper CD (2013) Maintenance of melanophore morphology and survival is cathepsin and vps11 dependent in zebrafish. PLoS One 8:e65096.
    Cooke J and Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58:455–476.
    Copley SD (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7:265–272. doi: 10.1016/S1367-5931(03)00032-2
    Costin G-E, Valencia JC, Wakamatsu K, Ito S, Solano F, Milac AL, Vieira WD, Yamaguchi Y, Rouzaud F, Petrescu A-J et al. (2005) Mutations in dopachrome tautomerase (Dct) affect eumelanin/pheomelanin synthesis, but do not affect intracellular trafficking of the mutant protein. Biochem J 391:249–259. doi: 10.1042/BJ20042070
    Curran K, Lister JA, Kunkel GR, Prendergast A, Parichy DM and Raible DW (2010) Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest. Dev Biol 344:107–18.
    Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, Pelus LM, Desponts C, Chen Y-B, Rezner B et al. (2013) Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122:3074–3081. doi: 10.1182/blood-2013-05-503177
    de Menezes AF, Oliveira de Carvalho F, Barreto RSS, de Santana Silva B, Shanmugam S, Gurgel RQ and de Souza Araújo AA (2016) Pharmacologic Treatment of Vitiligo in Children and Adolescents: A Systematic Review. Pediatr Dermatol 34:13–24. doi: 10.1111/pde.13024
    De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ et al. (1999) A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522. doi: 10.1038/19083
    Del Rio D, Stewart AJ and Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis NMCD 15:316–328. doi: 10.1016/j.numecd.2005.05.003
    de la Pompa JL and Epstein JA (2012) Coordinating Tissue Interactions: Notch Signaling in Cardiac Development and Disease. Dev Cell 22:244–254. doi: 10.1016/j.devcel.2012.01.014
    Delaune EA, François P, Shih NP and Amacher SL (2012) Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev Cell 23:995–1005. doi: 10.1016/j.devcel.2012.09.009
    Dermaut B, Theuns J, Sleegers K, Hasegawa H, Van den Broeck M, Vennekens K, Corsmit E, St. George-Hyslop P, Cruts M, van Duijn CM et al. (2002) The Gene Encoding Nicastrin, a Major γ-Secretase Component, Modifies Risk for Familial Early-Onset Alzheimer Disease in a Dutch Population-Based Sample. Am J Hum Genet 70:1568–1574. doi: 10.1086/340732
    Ding G-Z, Zhao W-E, Li X, Gong Q-L and Lu Y (2015) A comparative study of mitochondrial ultrastructure in melanocytes from perilesional vitiligo skin and perilesional halo nevi skin. Arch Dermatol Res 307:281–289. doi: 10.1007/s00403-015-1544-4
    Driever W and Fishman MC (1996) The zebrafish: heritable disorders in transparent embryos. J Clin Invest 97:1788–1794.
    D’souza B, Meloty-kapella L and Weinmaster G (2010) Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92:73–129. doi: 10.1016/S0070-2153(10)92003-6
    Dubrulle J, McGrew MJ and Pourquié O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–232.
    EauClaire SF, Cui S, Ma L, Matous J, Marlow FL, Gupta T, Burgess HA, Abrams EW, Kapp LD, Granato M et al. (2012) Mutations in vacuolar H+ -ATPase subunits lead to biliary developmental defects in zebrafish. Dev Biol 365:434–444. doi: 10.1016/j.ydbio.2012.03.009
    Ekblom R and Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7:1026–1042. doi: 10.1111/eva.12178
    Engeszer RE, Patterson LB, Rao AA and Parichy DM (2007) Zebrafish in The Wild: A Review of Natural History And New Notes from The Field. Zebrafish 4:21–40. doi: 10.1089/zeb.2006.9997
    Fiers W, Beyaert R, Declrcq W and Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730. doi: 10.1038/sj.onc.1203249
    Fleisher AS, Raman R, Siemers ER, Becerra L, Clark CM, Dean RA, Farlow MR, Galvin JE, Peskind ER, Quinn JF et al. (2008) Phase II safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer’s disease. Arch Neurol 65:1031–1038. doi: 10.1001/archneur.65.8.1031
    Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE and Kelly JW (2005) Functional Amyloid Formation within Mammalian Tissue. PLOS Biol 4:e6. doi: 10.1371/journal.pbio.0040006
    Fre S, Bardin A, Robine S and Louvard D (2011) Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse. Exp Cell Res 317:2740–2747. doi: 10.1016/j.yexcr.2011.06.012
    Garinis GA, Mitchell JR, Moorhouse MJ, Hanada K, de Waard H, Vandeputte D, Jans J, Brand K, Smid M, van der Spek PJ et al. (2005) Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO J 24:3952–3962. doi: 10.1038/sj.emboj.7600849
    Gavrieli Y, Sherman Y and Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501.
    Gazave E, Lapébie P, Richards GS, Brunet F, Ereskovsky AV, Degnan BM, Borchiellini C, Vervoort M and Renard E (2009) Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 9:249. doi: 10.1186/1471-2148-9-249
    Geisler F and Strazzabosco M (2015) Emerging roles of Notch signaling in liver disease. Hepatology 61:382–392. doi: 10.1002/hep.27268
    Geissler K and Zach O (2012) Pathways involved in Drosophila and human cancer development: the Notch, Hedgehog, Wingless, Runt, and Trithorax pathway. Ann Hematol 91:645–669. doi: 10.1007/s00277-012-1435-0
    Geling A, Steiner H, Willem M, Bally-Cuif L and Haass C (2002) A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3:688–694. doi: 10.1093/embo-reports/kvf124
    Gellin GA, Possick PA and Davis IH (1970) Occupational depigmentation due to 4-tertiarybutyl catechol (TBC). J Occup Med Off Publ Ind Med Assoc 12:386–389.
    Golden EB, Pellicciotta I, Demaria S, Barcellos-Hoff MH and Formenti SC (2012) The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol. doi: 10.3389/fonc.2012.00088
    Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, Oler AJ, Quiñones M, Hurt D, Fursov M et al. (2014) Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ 2:e644. doi: 10.7717/peerj.644
    Golstein P and Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43. doi: 10.1016/j.tibs.2006.11.001
    Grønskov K, Ek J and Brondum-Nielsen K (2007) Oculocutaneous albinism. Orphanet J Rare Dis 2:43. doi: 10.1186/1750-1172-2-43
    Guo B, McMillan BJ and Blacklow SC (2016) Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Curr Opin Struct Biol 41:38–45. doi: 10.1016/j.sbi.2016.05.012
    Guruharsha KG, Kankel MW and Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666. doi: 10.1038/nrg3272
    Hagedorn EJ, Durand EM, Fast EM and Zon LI (2014) Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE2. Exp Cell Res 329:220–226. doi: 10.1016/j.yexcr.2014.07.030
    Hall AM and Orlow SJ (2005) Degradation of tyrosinase induced by phenylthiourea occurs following Golgi maturation. Pigment Cell Res 18:122–129. doi: 10.1111/j.1600-0749.2005.00213.x
    Hamada H, Watanabe M, Lau HE, Nishida T, Hasegawa T, Parichy DM and Kondo S (2014) Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning. Dev Camb Engl 141:318–324. doi: 10.1242/dev.099804
    Hamilton F (1822) An account of the fishes found in the river Ganges and its branches / by Francis Hamilton, (formerly Buchanan,) ...; With a volume of plates in royal quarto. Printed for A. Constable and company; [etc., etc.], Edinburgh : doi: https://doi.org/10.5962/bhl.title.6897
    Hamilton G, Killick R, Genetic and Environmental Risk for Alzheimer’s Disease Consortium, Translational Genomics Research Institute Consortium, Lambert J-C, Amouyel P, European Alzheimer Disease Initiative, Carrasquillo MM, Pankratz VS, Graff-Radford NR et al. (2012) Functional and genetic analysis of haplotypic sequence variation at the nicastrin genomic locus. Neurobiol Aging 33:1848.e1-13. doi: 10.1016/j.neurobiolaging.2012.02.005
    Hellström AR, Watt B, Fard SS, Tenza D, Mannström P, Narfström K, Ekesten B, Ito S, Wakamatsu K, Larsson J et al. (2011) Inactivation of Pmel Alters Melanosome Shape But Has Only a Subtle Effect on Visible Pigmentation. PLoS Genet 7:e1002285. doi: 10.1371/journal.pgen.1002285
    Herreman A, Gassen GV, Bentahir M, Nyabi O, Craessaerts K, Mueller U, Annaert W and Strooper BD (2003) γ-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J Cell Sci 116:1127–1136. doi: 10.1242/jcs.00292
    Hill HZ and Hill GJ (1987) Eumelanin causes DNA strand breaks and kills cells. Pigment Cell Res 1:163–170.
    Hope-Ross MW, Mahon GJ, Gardiner TA and Archer DB (1993) Ultrastructural findings in solar retinopathy. Eye Lond Engl 7 ( Pt 1):29–33. doi: 10.1038/eye.1993.7
    Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et al. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. doi: 10.1038/nature12111
    Hsu C-H, Lin J-S, Po Lai K, Li J-W, Chan T-F, You M-S, Tse WKF and Jiang Y-J (2015) A new mib allele with a chromosomal deletion covering foxc1a exhibits anterior somite specification defect. Sci Rep 5:10673. doi: 10.1038/srep10673
    Hu C, Zeng L, Li T, Meyer MA, Cui M-Z and Xu X (2015) Nicastrin is required for APP but not Notch processing, while Aph-1 is dispensable for processing of both APP and Notch. J Neurochem. doi: 10.1111/jnc.13518
    Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S, Shimizu T, Mizushima Y, Shirasawa T and Tsubota K (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 103:11282–11287. doi: 10.1073/pnas.0602131103
    Itoh M, Kim C-H, Palardy G, Oda T, Jiang Y-J, Maust D, Yeo S-Y, Lorick K, Wright GJ, Ariza-McNaughton L et al. (2003) Mind Bomb Is a Ubiquitin Ligase that Is Essential for Efficient Activation of Notch Signaling by Delta. Dev Cell 4:67–82. doi: 10.1016/S1534-5807(02)00409-4
    Jack MT, Woo RA, Motoyama N, Takai H and Lee PWK (2004) DNA-dependent Protein Kinase and Checkpoint Kinase 2 Synergistically Activate a Latent Population of p53 upon DNA Damage. J Biol Chem 279:15269–15273. doi: 10.1074/jbc.M309917200
    Jeffery CJ (2004) Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins. Curr Opin Struct Biol 14:663–668. doi: 10.1016/j.sbi.2004.10.001
    Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D and Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408:475–479. doi: 10.1038/35044091
    Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, Cole JB, Gowan K, Holland PJ, Bennett DC et al. (2012) Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet 44:676–680. doi: 10.1038/ng.2272
    Johnson J, Rhee J, Parsons SM, Brown D, Olson EN and Rawls A (2001) The anterior/posterior polarity of somites is disrupted in paraxis-deficient mice. Dev Biol 229:176–187. doi: 10.1006/dbio.2000.9969
    Jülich D, Hwee Lim C, Round J, Nicolaije C, Schroeder J, Davies A, Geisler R, Lewis J, Jiang Y-J, Holley SA et al. (2005) beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Dev Biol 286:391–404. doi: 10.1016/j.ydbio.2005.06.040
    Justice MJ, Noveroske JK, Weber JS, Zheng B and Bradley A (1999) Mouse ENU mutagenesis. Hum Mol Genet 8:1955–1963.
    Karvonen SL, Haapasaari KM, Kallioinen M, Oikarinen A, Hassinen IE and Majamaa K (1999) Increased prevalence of vitiligo, but no evidence of premature ageing, in the skin of patients with bp 3243 mutation in mitochondrial DNA in the mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). Br J Dermatol 140:634–639.
    Kawada N, Moriyama T, Ando A, Koyama T, Hori M, Miwa T and Imai E (1999) Role of intron 1 in smooth muscle α-actin transcriptional regulation in activated mesangial cells in vivo. Kidney Int 55:2338–2348. doi: 10.1046/j.1523-1755.1999.00475.x
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B and Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn Off Publ Am Assoc Anat 203:253–310. doi: 10.1002/aja.1002030302
    Kopan R and Ilagan MXG (2009) The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 137:216–233. doi: 10.1016/j.cell.2009.03.045
    Krauss J, Geiger-Rudolph S, Koch I, Nüsslein-Volhard C and Irion U (2014) A dominant mutation in tyrp1A leads to melanophore death in zebrafish. Pigment Cell Melanoma Res 27:827–830. doi: 10.1111/pcmr.12272
    Kriska T, Pilat A, Schmitt JC and Girotti AW (2010) Sterol carrier protein-2 (SCP-2) involvement in cholesterol hydroperoxide cytotoxicity as revealed by SCP-2 inhibitor effects. J Lipid Res 51:3174–3184. doi: 10.1194/jlr.M008342
    Kumano K, Masuda S, Sata M, Saito T, Lee S-Y, Sakata-Yanagimoto M, Tomita T, Iwatsubo T, Natsugari H, Kurokawa M et al. (2008) Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res 21:70–78. doi: 10.1111/j.1755-148X.2007.00423.x
    Lambert JC, Mann DM, Harris JM, Chartier-Harlin MC, Cumming A, Coates J, Lemmon H, StClair D, Iwatsubo T and Lendon C (2001) The -48 C/T polymorphism in the presenilin 1 promoter is associated with an increased risk of developing Alzheimer’s disease and an increased Abeta load in brain. J Med Genet 38:353–355.
    Lauter G, Söll I and Hauptmann G (2011) Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev Biol 11:43. doi: 10.1186/1471-213X-11-43
    Lee J-H and Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551–554. doi: 10.1126/science.1108297
    Lee SM, Moon J, Redman BG, Chidiac T, Flaherty LE, Zha Y, Othus M, Ribas A, Sondak VK, Gajewski TF et al. (2015) Phase 2 study of RO4929097, a gamma-secretase inhibitor, in metastatic melanoma: SWOG 0933. Cancer 121:432–440. doi: 10.1002/cncr.29055
    Li J, Yue Y, Dong X, Jia W, Li K, Liang D, Dong Z, Wang X, Nan X, Zhang Q et al. (2015) Zebrafish foxc1a Plays a Crucial Role in Early Somitogenesis by Restricting the Expression of aldh1a2 Directly. J Biol Chem 290:10216–10228. doi: 10.1074/jbc.M114.612572
    Li M, Liu Q, Luo Y, Li Y, Lin S, Lian P, Yang Q, Li X, Liu X, Sadda S et al. (2016) Enhanced Depth SD-OCT Images Reveal Characteristic Choroidal Changes in Patients With Vogt-Koyanagi-Harada Disease. Ophthalmic Surg Lasers Imaging Retina 47:1004–1012. doi: 10.3928/23258160-20161031-04
    Lin X, Sun B, Zhu D, Zhao X, Sun R, Zhang Y, Zhang D, Dong X, Gu Q, Li Y et al. (2016) Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma. Cancer Sci 107:1079–1091. doi: 10.1111/cas.12978
    Liu H, Lei C, Long K, Yang X, Zhu Z, Zhang L and Liu J (2015) Mutant GNAQ promotes cell viability and migration of uveal melanoma cells through the activation of Notch signaling. Oncol Rep 34:295–301. doi: 10.3892/or.2015.3949
    Luxán G, D’Amato G, MacGrogan D and de la Pompa JL (2016) Endocardial Notch Signaling in Cardiac Development and Disease. Circ Res 118:e1–e18. doi: 10.1161/CIRCRESAHA.115.305350
    MacRae CA and Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721–731. doi: 10.1038/nrd4627
    Markovic SN, Erickson LA, Rao RD, Weenig RH, Pockaj BA, Bardia A, Vachon CM, Schild SE, McWilliams RR, Hand JL et al. (2007) Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc 82:364–380. doi: 10.4065/82.3.364
    Maverakis E, Cornelius LA, Bowen GM, Phan T, Patel FB, Fitzmaurice S, He Y, Burrall B, Duong C, Kloxin AM et al. (2015) Metastatic melanoma - a review of current and future treatment options. Acta Derm Venereol 95:516–524. doi: 10.2340/00015555-2035
    McGlinchey RP, Shewmaker F, McPhie P, Monterroso B, Thurber K and Wickner RB (2009) The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis. Proc Natl Acad Sci U S A 106:13731–13736. doi: 10.1073/pnas.0906509106
    McNeill MS, Paulsen J, Bonde G, Burnight E, Hsu M-Y and Cornell RA (2007) Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J Invest Dermatol 127:2020–2030. doi: 10.1038/sj.jid.5700710
    Meckler X and Checler F (2016) Presenilin 1 and Presenilin 2 Target γ-Secretase Complexes to Distinct Cellular Compartments. J Biol Chem 291:12821–12837. doi: 10.1074/jbc.M115.708297
    Menon IA, Wakeham DC, Persad SD, Avaria M, Trope GE and Basu PK (1992) Quantitative determination of the melanin contents in ocular tissues from human blue and brown eyes. J Ocul Pharmacol 8:35–42.
    Mohun T (1992) Muscle differentiation. Curr Opin Cell Biol 4:923–928.
    Moriyama M, Osawa M, Mak S-S, Ohtsuka T, Yamamoto N, Han H, Delmas V, Kageyama R, Beermann F, Larue L et al. (2006) Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173:333–339. doi: 10.1083/jcb.200509084
    Nagano O and Saya H (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95:930–935.
    Nandrot EF, Kim Y, Brodie SE, Huang X, Sheppard D and Finnemann SC (2004) Loss of Synchronized Retinal Phagocytosis and Age-related Blindness in Mice Lacking αvβ5 Integrin. J Exp Med 200:1539–1545. doi: 10.1084/jem.20041447
    Niimura M, Isoo N, Takasugi N, Tsuruoka M, Ui-Tei K, Saigo K, Morohashi Y, Tomita T and Iwatsubo T (2005) Aph-1 Contributes to the Stabilization and Trafficking of the γ-Secretase Complex through Mechanisms Involving Intermolecular and Intramolecular Interactions. J Biol Chem 280:12967–12975. doi: 10.1074/jbc.M409829200
    Nikaido M, Kawakami A, Sawada A, Furutani-Seiki M, Takeda H and Araki K (2002) Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nat Genet 31:195–199. doi: 10.1038/ng899
    North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang I-H, Grosser T et al. (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011. doi: 10.1038/nature05883
    Nuckels RJ, Ng A, Darland T and Gross JM (2009) The vacuolar-ATPase complex regulates retinoblast proliferation and survival, photoreceptor morphogenesis, and pigmentation in the zebrafish eye. Invest Ophthalmol Vis Sci 50:893–905. doi: 10.1167/iovs.08-2743
    Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW and Raible DW (2008) Identification of Genetic and Chemical Modulators of Zebrafish Mechanosensory Hair Cell Death. PLOS Genet 4:e1000020. doi: 10.1371/journal.pgen.1000020
    Oxtoby E and Jowett T (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21:1087–1095.
    Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brèthes D, di Rago J-P and Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230. doi: 10.1093/emboj/21.3.221
    Penton AL, Leonard LD and Spinner NB (2012) Notch signaling in human development and disease. Semin Cell Dev Biol 23:450–457. doi: 10.1016/j.semcdb.2012.01.010
    Picardo M, Dell’Anna ML, Ezzedine K, Hamzavi I, Harris JE, Parsad D and Taieb A (2015) Vitiligo. Nat Rev Dis Primer 1:15011. doi: 10.1038/nrdp.2015.11
    Prasad SB and Verma AK (2013) Cantharidin-mediated ultrastructural and biochemical changes in mitochondria lead to apoptosis and necrosis in murine Dalton’s lymphoma. Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can 19:1377–1394. doi: 10.1017/S143192761301324X
    Qiu X, Xu H, Haddon C, Lewis J and Jiang Y-J (2004) Sequence and embryonic expression of three zebrafish fringe genes: lunatic fringe, radical fringe, and manic fringe. Dev Dyn Off Publ Am Assoc Anat 231:621–630. doi: 10.1002/dvdy.20155
    Ramos-Balderas JL, Carrillo-Rosas S, Guzman A, Navarro RE and Maldonado E (2013) The zebrafish mutants for the V-ATPase subunits d, ac45, E, H and c and their variable pigment dilution phenotype. BMC Res Notes 6:39. doi: 10.1186/1756-0500-6-39
    Reifers F, Böhli H, Walsh EC, Crossley PH, Stainier DY and Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Dev Camb Engl 125:2381–2395.
    Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE and Vitiligo Working Group (2017) New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol 77:1–13. doi: 10.1016/j.jaad.2016.10.048
    Rossé T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B and Borner C (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391:496–499. doi: 10.1038/35160
    Rowton M, Ramos P, Anderson DM, Rhee JM, Cunliffe HE and Rawls A (2013) Regulation of mesenchymal-to-epithelial transition by PARAXIS during somitogenesis. Dev Dyn Off Publ Am Assoc Anat 242:1332–1344. doi: 10.1002/dvdy.24033
    Royle SJ (2013) Protein adaptation: mitotic functions for membrane trafficking proteins. Nat Rev Mol Cell Biol 14:592–599. doi: 10.1038/nrm3641
    Ryazanova AD, Alekseev AA and Slepneva IA (2012) The phenylthiourea is a competitive inhibitor of the enzymatic oxidation of DOPA by phenoloxidase. J Enzyme Inhib Med Chem 27:78–83. doi: 10.3109/14756366.2011.576010
    Sawada A, Fritz A, Jiang YJ, Yamamoto A, Yamasu K, Kuroiwa A, Saga Y and Takeda H (2000) Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Dev Camb Engl 127:1691–1702.
    Schauerte HE, van Eeden FJ, Fricke C, Odenthal J, Strähle U and Haffter P (1998) Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Dev Camb Engl 125:2983–2993.
    Schonthaler HB, Lampert JM, von Lintig J, Schwarz H, Geisler R and Neuhauss SCF (2005) A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Dev Biol 284:421–436. doi: 10.1016/j.ydbio.2005.06.001
    Schouwey K, Delmas V, Larue L, Zimber-Strobl U, Strobl LJ, Radtke F and Beermann F (2007) Notch1 and Notch2 receptors influence progressive hair graying in a dose-dependent manner. Dev Dyn Off Publ Am Assoc Anat 236:282–289. doi: 10.1002/dvdy.21000
    Ségard EM, Depecker MC, Lang J, Gemperli A and Cadoré J-L (2013) Ultrasonographic features of PMEL17 (Silver) mutant gene-associated multiple congenital ocular anomalies (MCOA) in Comtois and Rocky Mountain horses. Vet Ophthalmol 16:429–435. doi: 10.1111/vop.12021
    Serneels L, Dejaegere T, Craessaerts K, Horré K, Jorissen E, Tousseyn T, Hébert S, Coolen M, Martens G, Zwijsen A et al. (2005) Differential contribution of the three Aph1 genes to γ-secretase activity in vivo. Proc Natl Acad Sci U S A 102:1719–1724. doi: 10.1073/pnas.0408901102
    Shah D, Mahajan N, Sah S, Nath SK and Paudyal B (2014) Oxidative stress and its biomarkers in systemic lupus erythematosus. J Biomed Sci 21:23. doi: 10.1186/1423-0127-21-23
    Shen Y, Liu J, Wang X, Cheng X, Wang Y and Wu N (1997) Essential role of the first intron in the transcription of hsp90β gene. FEBS Lett 413:92–98. doi: 10.1016/S0014-5793(97)00883-1
    Shimshek DR, Jacobson LH, Kolly C, Zamurovic N, Balavenkatraman KK, Morawiec L, Kreutzer R, Schelle J, Jucker M, Bertschi B et al. (2016) Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice. Sci Rep 6:21917. doi: 10.1038/srep21917
    Shin JT and Fishman and MC (2002) FROM ZEBRAFISH TO HUMAN: Modular Medical Models. Annu Rev Genomics Hum Genet 3:311–340. doi: 10.1146/annurev.genom.3.031402.131506
    Sirin Y and Susztak K (2012) The Role of Notch in the Kidney, Development and Beyond. J Pathol 226:394–403. doi: 10.1002/path.2967
    Smithers L, Haddon C, Jiang YJ and Lewis J (2000) Sequence and embryonic expression of deltaC in the zebrafish. Mech Dev 90:119–123.
    Soza-Ried C, Öztürk E, Ish-Horowicz D and Lewis J (2014) Pulses of Notch activation synchronise oscillating somite cells and entrain the zebrafish segmentation clock. Dev Camb Engl 141:1780–1788. doi: 10.1242/dev.102111
    Sparrow DB, McInerney-Leo A, Gucev ZS, Gardiner B, Marshall M, Leo PJ, Chapman DL, Tasic V, Shishko A, Brown MA et al. (2013) Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet 22:1625–31.
    Srivastava S (2017) The Mitochondrial Basis of Aging and Age-Related Disorders. Genes. doi: 10.3390/genes8120398
    Ström L and Sjögren C (2007) Chromosome segregation and double-strand break repair — a complex connection. Curr Opin Cell Biol 19:344–349. doi: 10.1016/j.ceb.2007.04.003
    Takamiya M, Xu F, Suhonen H, Gourain V, Yang L, Ho NY, Helfen L, Schröck A, Etard C, Grabher C et al. (2016) Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development. Sci Rep 6:25046. doi: 10.1038/srep25046
    Takke C and Campos-Ortega JA (1999) her1, a zebrafish pair-rule like gene, acts downstream of notch signalling to control somite development. Development 126:3005–14.
    Takke C, Dornseifer P, v Weizsäcker E and Campos-Ortega JA (1999) her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signalling. Dev Camb Engl 126:1811–1821.
    Tan G, Gao Y, Shi M, Zhang X, He S, Chen Z and An C (2005) SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res 33:e122. doi: 10.1093/nar/gni124
    Tan PL, Bowes Rickman C and Katsanis N (2016) AMD and the alternative complement pathway: genetics and functional implications. Hum Genomics. doi: 10.1186/s40246-016-0079-x
    Theos AC, Berson JF, Theos SC, Herman KE, Harper DC, Tenza D, Sviderskaya EV, Lamoreux ML, Bennett DC, Raposo G et al. (2006) Dual loss of ER export and endocytic signals with altered melanosome morphology in the silver mutation of Pmel17. Mol Biol Cell 17:3598–3612. doi: 10.1091/mbc.E06-01-0081
    Thisse C and Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69. doi: 10.1038/nprot.2007.514
    Tokura Y, Fujiyama T, Ikeya S, Tatsuno K, Aoshima M, Kasuya A and Ito T (2015) Biochemical, cytological, and immunological mechanisms of rhododendrol-induced leukoderma. J Dermatol Sci 77:146–149. doi: 10.1016/j.jdermsci.2015.02.001
    Topczewska JM, Topczewski J, Shostak A, Kume T, Solnica-Krezel L and Hogan BL (2001) The winged helix transcription factor Foxc1a is essential for somitogenesis in zebrafish. Genes Dev 15:2483–2493. doi: 10.1101/gad.907401
    Tseng L-C, Zhang C, Cheng C-M, Xu H, Hsu C-H and Jiang Y-J (2014) New Classes of Mind Bomb-Interacting Proteins Identified from Yeast Two-Hybrid Screens. PLoS ONE 9:e93394. doi: 10.1371/journal.pone.0093394
    Turnpenny PD, Whittock N, Duncan J, Dunwoodie S, Kusumi K and Ellard S (2003) Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet 40:333–9.
    van den Boorn JG, Picavet DI, van Swieten PF, van Veen HA, Konijnenberg D, van Veelen PA, van Capel T, de Jong EC, Reits EA, Drijfhout JW et al. (2011) Skin-Depigmenting Agent Monobenzone Induces Potent T-Cell Autoimmunity toward Pigmented Cells by Tyrosinase Haptenation and Melanosome Autophagy. J Invest Dermatol 131:1240–1251. doi: 10.1038/jid.2011.16
    van Duijn CM, Cruts M, Theuns J, Van Gassen G, Backhovens H, van den Broeck M, Wehnert A, Serneels S, Hofman A and Van Broeckhoven C (1999) Genetic association of the presenilin-1 regulatory region with early-onset Alzheimer’s disease in a population-based sample. Eur J Hum Genet EJHG 7:801–806. doi: 10.1038/sj.ejhg.5200373
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al. (2001) The Sequence of the Human Genome. Science 291:1304–1351. doi: 10.1126/science.1058040
    Wakamatsu K and Ito S (2002) Advanced Chemical Methods in Melanin Determination. Pigment Cell Res 15:174–183. doi: 10.1034/j.1600-0749.2002.02017.x
    Wang C-H, Lin W-D, Bau D-T, Chou I-C and Tsai F-J (2011) Genetic and clinical profiles of spondylocostal dysostosis patients in Taiwan. Am J Med Genet A 155A:3132–5.
    Wang R, Tang P, Wang P, Boissy RE and Zheng H (2006) Regulation of tyrosinase trafficking and processing by presenilins: Partial loss of function by familial Alzheimer’s disease mutation. Proc Natl Acad Sci U S A 103:353–358. doi: 10.1073/pnas.0509822102
    Ward LD and Kellis M (2012) Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol 30:1095–1106. doi: 10.1038/nbt.2422
    Watt B, Tenza D, Lemmon MA, Kerje S, Raposo G, Andersson L and Marks MS (2011) Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic. PLoS Genet. doi: 10.1371/journal.pgen.1002286
    Weaver DT (1998) Telomeres: Moonlighting by DNA repair proteins. Curr Biol 8:R492–R494. doi: 10.1016/S0960-9822(98)70315-X
    Weinberg ES, Allende ML, Kelly CS, Abdelhamid A, Murakami T, Andermann P, Doerre OG, Grunwald DJ and Riggleman B (1996) Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Dev Camb Engl 122:271–280.
    Wright GJ, Giudicelli F, Soza-Ried C, Hanisch A, Ariza-McNaughton L and Lewis J (2011) DeltaC and DeltaD interact as Notch ligands in the zebrafish segmentation clock. Development 138:2947–2956. doi: 10.1242/dev.066654
    Xia W, Zhang J, Ostaszewski BL, Kimberly WT, Seubert P, Koo EH, Shen J and Selkoe DJ (1998) Presenilin 1 regulates the processing of beta-amyloid precursor protein C-terminal fragments and the generation of amyloid beta-protein in endoplasmic reticulum and Golgi. Biochemistry (Mosc) 37:16465–16471. doi: 10.1021/bi9816195
    Xiong X-X, Ding G-Z, Zhao W-E, Li X, Ling Y-T, Sun L, Gong Q-L and Lu Y (2017) Differences in the melanosome distribution within the epidermal melanin units and its association with the impairing background of leukoderma in vitiligo and halo nevi: a retrospective study. Arch Dermatol Res 309:323–333. doi: 10.1007/s00403-017-1730-7
    Yamamoto A, Amacher SL, Kim SH, Geissert D, Kimmel CB and De Robertis EM (1998) Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Dev Camb Engl 125:3389–3397.
    Yu R, Broady R, Huang Y, Wang Y, Yu J, Gao M, Levings M, Wei S, Zhang S, Xu A et al. (2012) Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PloS One 7:e51040. doi: 10.1371/journal.pone.0051040
    Zakon SJ and Goldberg AL (1951) OCCUPATIONAL LEUCODERMA FROM RUBBER DUST AND DEBRIS. AMA Arch Dermatol Syphilol 64:441–443. doi: 10.1001/archderm.1951.01570100058010
    Zanotti S and Canalis E (2013) Notch signaling in skeletal health and disease. Eur J Endocrinol 168:R95-103. doi: 10.1530/EJE-13-0115
    Zhang C, Li Q and Jiang Y-J (2007a) Zebrafish Mib and Mib2 Are Mutual E3 Ubiquitin Ligases with Common and Specific Delta Substrates. J Mol Biol 366:1115–1128. doi: 10.1016/j.jmb.2006.11.096
    Zhang C, Li Q, Lim C-H, Qiu X and Jiang Y-J (2007b) The characterization of zebrafish antimorphic mib alleles reveals that Mib and Mind bomb-2 (Mib2) function redundantly. Dev Biol 305:14–27. doi: 10.1016/j.ydbio.2007.01.034
    Zhang D, Lu C, Whiteman M, Chance B and Armstrong JS (2008) The mitochondrial permeability transition regulates cytochrome c release for apoptosis during endoplasmic reticulum stress by remodeling the cristae junction. J Biol Chem 283:3476–3486. doi: 10.1074/jbc.M707528200
    Zhang Y, Luo W, Wang H, Lin P, Vetrivel KS, Liao F, Li F, Wong PC, Farquhar MG, Thinakaran G et al. (2005) Nicastrin is critical for stability and trafficking but not association of other presenilin/gamma-secretase components. J Biol Chem 280:17020–17026. doi: 10.1074/jbc.M409467200
    Zhao G, Liu Z, Ilagan MXG and Kopan R (2010) Gamma-secretase composed of PS1/Pen2/Aph1a can cleave notch and amyloid precursor protein in the absence of nicastrin. J Neurosci Off J Soc Neurosci 30:1648–1656. doi: 10.1523/JNEUROSCI.3826-09.2010

    QR CODE