簡易檢索 / 詳目顯示

研究生: 施瑄芳
Shiuna-Fang Shy
論文名稱: SOI晶片整合面型微加工技術於微光學平台之研究
The Study of SOI and Poly-Si Integration Process for Microoptical bench
指導教授: 方維倫博士
Dr. Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 80
中文關鍵詞: SOI晶片溝槽回填技術微光學平台
外文關鍵詞: SOI wafer, trench-refilled technology, microoptical bench
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    一般SOI晶片其元件層之單晶矽具有優良之材料性質,適於製作微元件,且其製程普遍簡單,但元件製作缺乏變化性,而面型微加工技術雖可製作各式各樣設計,但元件性能易受薄膜性質影響,因此本文利用溝槽回填之技術完成面型元件整合SOI晶片製程,不但兼具兩者優點且有互補之功效,可提升微元件性能。

    據此整合製程提出一微光學平台架構,包含下列元件︰梳狀致動器、微平台、微光學元件、微絞鏈及微卡榫等定位機制。主要利用一移動平台乘載被動光學元件概念,使致動器和微光學元件效能可分別掌控,獲得提升。

    微光學平台具有三項特色,首先利用致動器提供主動光調變機制,增加微光學平台應用範圍;其次是利用單晶矽製作厚結構為致動器之用,不但提升致動器之效能,並透過適當設計增加可靠度及穩定性;第三則是藉由面型微加工技術可製作各式各樣微光學元件、微絞鏈及微卡榫,整合於微平台上。由於微光學平台架構具有以上優勢,因此在各式光學微機電系統應用中極具潛力。


    Abstract
    The reliable material property of device layer on SOI wafer is suitable for fabricating micro devices, but the current proposed processes of SOI wafer are too simple to manufacture devices with various functionalities. On the contrary, the surface micromachining is good at achieving complicated design; but the residual stress of thin film destroys devices. Combining the individual advantages of SOI wafer and surface micromachining, an integration process is established by trench-refilled technology in the thesis.

    The microoptical bench with the proposed integration process is comprised of micro optical device, some hinges and latches on a comb-drive micro bench. By decoupling the functionalities of actuator and passive optical device, the performance of the two components will be significantly improved.

    The proposed microoptical bench provides active light modulation with actuator, which is capable of increasing the applications of microoptical bench. Besides, the fabricated high-aspect-ratio actuators with single crystal silicon have excellent performance in reliability and stability. Furthermore, the surface micromachining is able to fabricate various optical devices, hinges and latches for integrating with micro bench. Therefore, the proposed microoptical bench is potential in optical applications.

    目錄 中文摘要………………………………………………………….………………...…1 英文摘要………………………………………………………….………………...…2 目錄……………………………………………………………………………………3 圖目錄…………………………………………………….………………………...…4 表目錄………………………………………………………………………………....6 第一章 緒論………………………………………………………..…………………7 1-1 研究動機……………………………………………………………..………...7 1-2 文獻回顧………………………………………………………………..……...8 1-3 研究目標………………………...……………………………………………14 第二章 微光學平台之設計與分析…………………..……………………………..25 2-1 微平台之梳狀致動器理論分析………………..…………………………….25 2-2 微平台之梳狀致動器數值模擬…………………..………………………….28 2-3 微光學元件之設計……………………………...……………………………32 第三章 製程與結果…………………………………………………………………43 3-1 製程步驟與成果……………………………………………..……………….43 3-2 製程問題與討論………………………………...……………………………46 3-2.1 體深蝕刻加工…………………………………………………………46 3-2.2 回填製程………………………………………………………………48 3-2.3 結構層厚度削薄………………………………………………………49 第四章 量測與實驗架設…………………………………………..………………..61 4-1 靜態量測……………………………………………………………………...61 4-2 動態量測……...………………………………………………………………62 第五章 結論…………………………………………………………..……………..69 5-1 本文貢獻………..…………………………………………………………… 69 5-2 未來工作……………………………………….……………………………..70 第六章 參考文獻……………………………………………………………………74

    [1] L.Y. Lin, J.L. Shen, S. S. Lee and M. C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” Optics Letters, 21, no.2, pp.155-157, 1996
    [2] M. C. Wu, “Micromachining for Optical and Optoelectronic Systems,” Proceedings of the IEEE, 85, no.11, pp.1833-1856, 1997
    [3] R. S. Muller and K. Y. Lau, “Surface-micromachined Microoptical Elements and Systems,” Proceedings of the IEEE, 86, no.8, pp.1705-1720, 1998
    [4] http://www.phytron.com
    [5] N. C. MacDonald, “Micro-Machines for moving nm-scale Objects,” IEEE 6th Int. Symposium on Micro Machine and Human Science, pp.53, 1995
    [6] L. Y. Lin, J. L. Shen, S. S. Lee and M. C. Wu, “Surface-micromachined micro-XYZ stages for free-space microoptical bench, ” Photonics technology letters, 9, no.3, pp. 345-347, 1997
    [7] L. Fan, M. C. Wu, K. D. Choquette and M. H. Crawford, “Self-assembled XYZ stages for optical scanning and alignment, “Int. Conf. Solid-State Sensors and Actuators (Transducer ‘ 97), Chicago, IL, June 16-19, 1997, pp.319-322
    [8] K. Yoo, J. -L. A. Yeh, N.C. Tien, C. Gibbons, Q. Su, W. Cui and R.N. Miles, ”Fabrication of a biomimetic corrugated polysilicon diaphragm with attached single crystal silicon proof masses,” The 11th Int. Conf. Solid-State Sensors and Actuators, and EurosensorsⅩⅤ (Transducer ‘ 01, EurosensorsⅩⅤ), Munich, Germany, June 10-14, 2001, pp.130-133
    [9] Z. Li, Y. Hao, D. Zhang, T. Li and G. Wu, “An SOI-MEMS technology using substrate layer and bonded glass as wafer-level package,” Sensors and Actuators A, 96, pp.34-42, 2002
    [10] W. Mokwa, “Advanced sensors and microsystems on SOI,” Journal of high speed electronics and systems, 10, no.1, pp.147-153, 2000
    [11] W. Noell, P. -A. Clerc, L. Dellmann, B. guldimann, H. -P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker and N. de Rooij, “Applications of SOI-based optical MEMS,” Journal of Selected topics in Quantum Electronics, 8, no.1, 2002
    [12] SOI MEMS for optical components, European Semiconductor, pp.53-54, Jan. 2001
    [13] S. Renard, SOI micromachining technologies for MEMS, Tronic’s Microsystems, http://www.tronics-mst.com
    [14] G. -D. J. Su, H. Toshiyoshi, M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors, “ Photonics technology letters, 13, no.6, pp.606-607, 2001
    [15] K.S.J. Pister, M.W. Judy, S.R.Burgett, and R.S. Fearing, “Microfabricated hinges,” Sensors and Actuators A, 33, pp.249-256, 1992
    [16] E. S. Kolesar, M. D. Ruff, W. E. Odom, J. T. Howard, S. Y. Ko, P. B. Allen, J. M. Wilken, R. J. Wilks, J. E. Bosch, and N. C. Boydston, “Three-dimensional structures assembled from polysilicon surface micromachined components containing continuous hinges and microrivets, “ Thin Solid Films, 398-399, pp.566-571, 2001
    [17] R.R.A. Syms and E.M. Yeatman, “Self-assembly of fully three-dimensional microstructures using rotation by surface tension force, Elect. Lett. , 29, pp.662-664, 1993
    [18] R.R.A. Syms, “Self-assembled 3-D silicon microscanners with self-assembled electrostatic drives, ” Photonics technology letters, 12, no.11, pp.1519-1521, 2000
    [19] R.R.A. Syms, C. Gormley and S. Blackstone, “Surface tension powered self-assembly of 3D MOEMS devices using DRIE of bonded silicon-on-insulator wafers, “ IEE Seminar on Demonstrated Micromachining Techniques for Industry, Birmingham, UK. 29th March 2000
    [20] R.R.A. Syms, “Surface Tension Powered Self-Assembly of 3-D micro-optomechanical structures,” Journal of Microelectromechanical systems, 8, no.4, pp.448-455, 1999
    [21] R.R.A. Syms, C. Gormley and S. Blackstone, “ Improving yield, accuracy and complexity in surface tension self-assembled MOEMS,” Sensors and Actuators A, 88, pp.273-283, 2001
    [22] P.R. Patterson, D. Hah, H. Nguyen, H. Toshiyoshi, R.-M-. Chao and M. C. Wu, “ A scanning micromirror with angular comb drive actuaion, “ IEEE MEMS’02, Las Vegas, Nevada, January 20-24 , 2002, pp.544-547
    [23] H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Journal of Selected topics in Quantum Electronics, 6, no.5, 2000
    [24] S. Hollar, A. Flynn, S. Bergbreiter and K.S.J. Pister, “Robot leg motion in a planarized-SOI, 2 Poly Process, “, Solid-State Sensor and Actuator Workshop, Hilton Head Island, S.C., June 2-6, 2002
    [25] J. Kubby, J. Calamita, J.Chang, J.Chen, P. Gulvin,C.-C. Lin, R. Lofthus, B.Nowak, Y.Su, A. Tran, D. Burns, J. Bryzek, J. Gillbert, C. Hsu, T. Korsmeyer, A. Morris, T. Plowman, V. Rabinovich, T. Daiber, B. Scharf, A. Zosel, L. Fan, J. Hartman, A. Husain, N. Golubovic-Liakopoulos, R. Mail, T. Pumo, S.Delvecchio, S. Zhou, M. Rosa, D. Sun, Hybrid integration of light emitters and detectors with SOI based Micro-Opto-Electro-Mechanical Systems(MOEMS)
    [26] Y. Ando, T. Ikehara and S. Matsumoto, “Design, fabrication and testing of new comb actuators realizing three-dimensional continuous motions,” Sensors and Actuators A, 97-98, pp.579-586, 2002
    [27] J.-L. A. Yeh, C.-Y. Hui and N.C. Tien, “Electrostatic model for an asymmetric combdrive,” Journal of Microelectromechanical systems, 9, no.1, pp.126-135,2000
    [28] A. Selvakumar, K. Najafi, W.H. Juan and S. Pang, “Vertical comb array microactuators,” IEEE MEMS’95, Amsterdam, Netherlands, 29 Jan.-2 Feb., 1995, pp.43-48
    [29] J.-L. A. Yeh, H. Jiang and N. C. Tien, “Fabrication of polysilicon platforms actuated by high-aspect-ratio silicon combdrives,” The 13th European. Conf. Solid-State Transducers, ( EurosensorsⅩⅢ ) , The Hague, The Netherlands, Sep. 12-15, 1999, pp.15-16
    [30] V. P. Jaecklin, C. Linder and N. F. de Rooij, “Novel polysilicon comb actuators for XY-stages,” IEEE MEMS’92, Travemünde, Germany, Feb. 4-7, pp.147-149, 1992
    [31] T. Harness and R. R. A. Syms, “Characteristic modes of electrostatic comb-drive X-Y microactuators, “ Journal of Micromech. Microeng. , 9, pp.1-8, 1999
    [32] A. Selvakumar and K. Najafi, “High density vertical comb array microactuatos fabricated using a novel Bulk/Poly-silicon trench refill tecnology,” Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, June 13-16,1994,pp.138-141
    [33] R. Legtenberg, A W Groeneveld and M Elwenspoek, “Comb-drive actuators for large displacements, ”Journal of Micromech. Microeng. , 6, pp.320-329, 1996
    [34] 何亦平, “微結構自組裝技術之研究,” 國立清華大學碩士論文, 2002
    [35] H. Jiang, K. Yoo, J.-L. Andrew Yeh, Z. Li and N. C. Tien, “Fabrication of thick silicon dioxide sacrificial and isolation blocks in a silicon substrate, ”Journal of Micromech. Microeng. , 12, pp.87-95, 2002
    [36] C. Zhang and K. Najafi, “Fabrication of thick silicon dioxide layers using DRIE, oxidation and trench refill,” IEEE MEMS’02, Las Vegas, Nevada, January 20-24 , 2002, pp.160-163
    [37] S. C. Lee, S. Park and D.-il D. Cho, “Honeycomb-shaped deep-trench oxide posts combined with the SBM technology for micromachining single-crystal silicon without using SOI,” Sensors and Actuators A, 97-98, pp.734-738, 2002
    [38] S. M. Sze, Semiconductor Devices Physics and Technology, 1ed Ed., New York, NY : John Wiley & Sons, 1985
    [39] J. Kiihamäki, H. Kattelus, J. Karttunen and S. franssila, “Depth and profile control in plasma etched MEMS structure,” Sensors and Actuators A, 82, pp.234-238, 2000
    [40] C.Gormley, K.Yallup and W.A.Nevin, “State of art deep silicon anisotropic etching on SOI bonded substrates for dielectric isolation and MEMS applications”
    [41] L. Fan, R.T. Chen, A. Nespola and M. C. Wu, “Universal MEMS platforms for passive RF components : suspended inductors and variable capacitors,” IEEE, pp.29-33, 1998
    [42] F. P. Beer and E. R. Johnston, Jr., Mechanics of Materials, 2nd Ed., New York, NY : McGraw-Hill, Inc., 1992
    [43] B.-H. Kim, W.-K. Seong and K. Chun, Design and fabrication of an electrostatic microactuator for hard disk drives, datatech, pp.67-71
    [44] R. A. Conant, J. T. Nee, K.Y. Lau and R.S. Muller, “A flat high-frequency scanning micromirror, ” Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, June 4-8, 2000,pp.6-9

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE