簡易檢索 / 詳目顯示

研究生: 劉建國
Chien-Kuo Liu
論文名稱: 高分子材料之加馬輻射效應及機械性質之研究
The effect of gamma ray radiation on the physical properties of polymers and their mechanical properties
指導教授: 李三保
Sanboh Lee
胡塵滌
Chen-Ti Hu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 303
中文關鍵詞: 加馬輻射對排-聚苯乙烯質傳聚碳酸酯奈米壓痕
外文關鍵詞: gamma ray, syndiotactic polystyrene, mass transport, polycarbonate, nanoindentation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 加馬輻射作用於聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)及對排-聚苯乙烯(sPS)的光學性質,均造成穿透率下降及截止波長增加,穿透率之下降隨著所受加馬劑量的增加而增加,光學性質的改變可藉由退火處理而回復,但不同照射環境所造成之改變及可回復的程度不同。sPS於氧中受加馬輻射產生之色心均為永久色心,sPS於空氣和真空中受加馬輻射產生的可退火色心及自由基可經由退火過程消失,其色心及自由基消失的動力學均為一級反應過程,sPS於空氣中和真空中因加馬輻射所產生的自由基亦可於退火過程消失,然其動力學分別為一級及二級反應過程。加馬輻射作用對於sPS等溫結晶行為造成影響,其結晶度隨加馬劑量的增加而增加,於氧中受加馬輻射之結晶度大於在真空中受加馬輻射者,sPS於真空中受加馬輻射後之等溫結晶,其 □□□結晶形態隨著加馬劑量增加而增加,而 □□結晶形態則隨加馬劑量增加而稍微減少,於氧氣中受加馬輻射者則呈現相反之趨勢,熔融之sPS於220□C等溫結晶形成 □□□□形態結晶,然而受加馬輻射後之sPS之等溫結晶形態則轉變為 □□□□和 □□ 結晶形態。加馬輻射對於sPS非等溫結晶的過程有抑制的效應,其結晶起始溫度隨所受劑量增加而降低,且於氧中受輻射者下降明顯,其結晶成長維數介於二維和三維之間,加馬輻射對於試片的影響則是降低結晶成長的維數,輻射過程中氧與試片作用的結果,提高了 □□□形態結晶最大速率時的結晶溫度,sPS非等溫結晶過程的活化能值則隨著加馬劑量增加而減小。
    丙酮溶劑與PC之質傳行為為物理作用,且存在厚度及壓縮應力效應,丙酮於施加壓縮應力之PC中質傳所需克服的活化能小於未受應力作用者,但其質傳的活化能隨著厚度減小而增加,丙酮溶劑於質傳過程除了引發PC結晶之外,於35 ~ 20□C的質傳溫度亦使得厚度小於0.8 mm的PC表面產生週期性條紋,條紋的產生與溶劑引起的溶脹應力和結晶有關。本文提出綠豆和紅豆吸水的質傳模型,綠豆和紅豆吸水的質傳行為包括種皮潤濕和種仁的擴散過程,水於種皮潤濕過程中的濃度,隨吸收時間呈指數地增加,但於完全潤濕後則保持為常數,水於種仁中的擴散則遵循擴散定律。
    本文提出黏彈性材料之奈米壓痕負載-位移理論模型,可解釋於奈米壓痕量測過程位移量縮減之前的負載-位移關係,並與五種高分子之實驗數據相當符合,本理論並可解釋高分子等黏彈性材料於奈米壓痕負載-位移曲線中出現之“鼻子”現象。丙酮溶劑引發PC結晶的劈斷面,可分為三層結構,內層為試片玻璃態之心部,為未受溶劑影響之區域,中間層為溶脹層,為吸收溶劑而溶脹但尚未結晶完成之區域,接近試片外緣為結晶層,為溶劑引發結晶完全之區域,溶脹層與試片玻璃態之心部有明顯界線分隔,結晶層與溶脹層則是以晶粒成核和成長區域分界,其結晶為球晶型態,溶劑引發結晶之速率小於溶劑擴散之速率,藉由奈米壓痕量測可以得到溶脹層和結晶層的楊氏模數和硬度值,其楊氏模數及硬度值之大小依序為結晶層 > 溶脹層 > 試片玻璃態之心部。


    第一章 緒論 1.1 高分子與材料的作用 1.1.1 輻射的種類及單位……………………………………………………..…………………1 1.1.2 影響輻射效應的因素……………………………………………………………………..1 1.1.3 輻射對高分子材料反應的機制..………………………...……………………………….4 1.1.4 輻射影響高分子材料機械和物理性質………………………………….……………….5 1.1.5 對排-聚苯乙烯(syndiotactic polystyrene, sPS)…………………………………………...6 1.2 高分子材料與溶劑的質傳行為 1.2.1 質傳的分類………………………………………………………………………………..7 1.2.2 影響質傳的因素……………………………………………….………………………….8 1.2.3 質傳模型……………………………………………………………….………………….9 1.2.4 溶劑引發結晶……………………………………………………………………………11 1.3 黏彈性高分子材料的奈米壓痕行為…………………………………………..…………….12 1.4 本文研究動機與目的………………………………………….……………………………..15 附圖…………………………………………………………………………..……………………..17 第二章 加馬輻射影響高分子光學性質及色心消失動力學研究 2.1節 真空、空氣和氧中照射加馬射線對高分子光學性質的影響 2.1.1 簡介………………………………………………………………….…………………….18 2.1.2 實驗步驟……………………………………………………………………………….….19 2.1.2.1 材料………………………………………………………………..………………….19 2.1.2.2 試片製備…………………………………..………………………………………….20 2.1.2.3 加馬照射…………………………………………………………….………………..20 2.1.2.4 紫外-可見光譜儀量測……………………………………………………...……...…20 2.1.2.5 霍氏轉換紅外光譜儀量測……………………………………………………….…..21 2.1.3 結果與討論……………………………………………………………….……………….21 2.1.3.1 聚碳酸酯(PC)………………………………………………………...…….…………22 2.1.3.2 聚甲基丙烯酸甲酯(PMMA)………………………………………..………………..23 2.1.3.3 對排-聚苯乙烯(sPS)………………………………………………………………….24 2.1.2.4 氧的效應……………………………………………………………….……………..25 2.1.4 結論…………………………………………………………………………………..……26 附表…………………………………………………………...………………………………….28 附圖……..………………………………………………………………………………………..30 2.2節 受加馬照射之非晶態對排-聚苯乙烯於退火過程色心消失之動力學分析 2.2.1 簡介…………………………………………………………………………...…..……….50 2.2.2 實驗步驟……………………………………………………………………………….….51 2.2.2.1 材料………………………………………………………………..………………….51 2.2.2.2 試片製備…………………………………………………………..………………….51 2.2.2.3 加馬照射…………………………………………………………….………………..52 2.2.2.4 熱性質量測……………………………………………………..…………………….52 2.2.2.5 紫外-可見光譜儀量測………………………………………………………………..52 2.2.2.6 電子順磁共振儀量測…………………………………………………………..…….52 2.2.2.7 紅外光譜儀量測………………………………………………………………..…….53 2.2.3 結果與討論……………………………………………………………………….……….53 2.2.3.1 DSC量測分析…………………………………………………………………………53 2.2.3.2 UV-Vis光譜分析……………………………………………………………….……..54 2.2.3.3 試片厚度之影響…………………………………………………………..………….55 2.2.3.4 色心消失動力學模型…………………………………………………….…………..56 2.2.3.5 UV-Vis光譜儀量測分析…………………………………………………………...…57 2.2.3.6 單色儀臨場量測分析……………………………………………………………...…59 2.2.3.7 自由基消失動力學…………………………………………………………………...60 2.2.3.8 電子自旋共振(EPR)譜分析……………………………………………………….…62 2.2.3.9 FT-IR光譜分析…………………………………………………………………..……63 2.2.4 結論…………………………………………………………………………………..……64 附表………………………………………………………………………...…………………….66 附圖……..………………………………………………………………………………………..70 第三章 加馬輻射影響對排-聚苯乙烯結晶熔融行為及動力學研究 3.1節 受加馬輻射之對排-聚苯乙烯等溫結晶熔融行為分析 3.1.1 簡介………………………………………………………………….…………………….94 3.1.2 實驗步驟……………………………………………………………………………….….96 3.1.2.1 材料………………………………………………………………..………………….96 3.1.2.2 試片製備…………………………………..………………………………………….96 3.1.2.3 加馬照射…………………………………………………………….………………..96 3.1.2.4 等溫結晶量測……………………………………………………...……………....…96 3.1.2.5 紅外光譜量測…………………………………………………………………….…..97 3.1.2.6 X-ray繞射儀量測…………………………………..………………………..………97 3.1.2.7 偏極光顯微鏡觀察………………………………………………………………….97 3.1.3 結果與討論……………………………………………………………….……………….97 3.1.4 結論………………………………………………………………………………..……101 附表…………………………………………………………...……………………………..….103 附圖……..………………………………………………………………………………………105 3.2節 受加馬輻射照射之對排-聚苯乙烯非等溫結晶動力學分析 3.2.1 簡介…………………………………………………………………………...………….114 3.2.2 實驗步驟……………………………………………………………...………………….116 3.2.2.1 材料…………………………………………………………………....…………….116 3.2.2.2 試片製備…………………………………………………………..…..…………….116 3.2.2.3 加馬照射…………………………………………………………….………………116 3.2.2.4 非等溫結晶量測…………………………………………………………………….116 3.2.2.5 X-ray繞射儀量測………………………………………………………………..…..117 3.2.3 結果與討論……………………………………………………………………….…..….117 3.2.3.1 修改之Avrami方程式及Ozawa方法………………………………………………117 3.2.3.2 非等溫結晶放熱峰及相對結晶度計算……………………………...……….…….119 3.2.3.3 於真空中受加馬照射之對排-聚苯乙烯非等溫結晶行為………..………….…….120 3.2.3.4 於空氣中受加馬照射之對排-聚苯乙烯非等溫結晶行為…………………..……..121 3.2.3.5 於氧氣中受加馬照射之對排-聚苯乙烯非等溫結晶行為…………………………122 3.2.3.6 非等溫結晶的活化能…………………………………………………..………...…123 3.2.3.7 非等溫結晶結構分析………………………………………………..……………...125 3.2.4 結論………………………………………………………………………...………….…125 附表………………………………………………………………………...………...…………127 附圖……..………………………………………………………………………………………135 第四章 溶劑在高分子材料及有機質中的質傳分析及其模型之建立 4.1節 丙酮於外施壓縮應力之聚碳酸酯的質傳行為及厚度效應 4.1.1 簡介………………………………………………………………….………………...…146 4.1.2 實驗步驟…………………………………………………………………………………147 4.1.2.1 材料………………………………………………………………..……...…………147 4.1.2.2 試片製備…………………………………..………………………………...………147 4.1.2.3 外施壓縮應力………………………………………….……………………………147 4.1.2.4 質傳量測……………………………………………………...…………..……....…148 4.1.2.5 光學顯微鏡觀察表面形態……………..…………………………………...………148 4.1.3 結果與討論……………………………………………………………….………...……148 4.1.3.1 壓縮應力對質傳之效應……………………………………………….……………148 4.1.3.2 厚度對質傳之效應……………………………...……….………………………….151 4.1.3.3 壓縮應力對平衡溶脹比(equilibrium-swelling ratio)之效應………..…………...…152 4.1.3.4 厚度對平衡溶脹比之效應…………………………………………………...……..152 4.1.3.5 時效(aging)處理對平衡溶脹比之效應………………………………..……………153 4.1.3.6 FT-IR光譜分析…………………………………………………..…………...…...…153 4.1.3.7 表面形態分析………………………………………………………..……………...154 4.1.4 結論…………………………………………………………………………..…………..156 附表…………………………………………………………...……………………………..….157 附圖……..………………………………………………………………………………………160 4.2節 豆子吸收水之質傳模型的建立及實驗驗證 4.2.1 簡介…………………………………………………………………………...………….173 4.2.2 質傳模型………………………………...……………………………………………….174 4.2.2.1 水吸收(water absorption)模型……………………...………………....…………….174 4.2.2.2 種皮潤濕(testa wetting)理論………………..………………………………...…….177 4.2.3 實驗步驟…………………………………………………………………………………178 4.2.3.1 材料………………………………………………………………..……...…………178 4.2.3.2 加馬照射…………………………………………….………………………………179 4.2.3.3 質傳量測………………………………………….…………………………………179 4.2.3.4 熟度測試………………………………...…………..………………………........…179 4.2.4 結果與討論……………………………………………………………………….…..….179 4.2.4.1 綠豆吸收水之質傳………………………………………………….………………180 4.2.4.2 紅豆吸收水之質傳……………………………...…………………………….…….182 4.2.4.3 黃豆與黑豆吸收水之質傳………..…………………………………………..…….183 4.2.4.4 文獻分析(加州小白豆及黃豆)…………………………………………...……..184 4.2.4.5 種皮對水吸收的效應……………………………………………………….………184 4.2.5 結論………………………………………………………………………...………….…185 附表………………………………………………………………………...………...…………186 附圖……..………………………………………………………………………………………189 第五章 高分子機械性質-奈米壓痕理論模型之建立及量測 5.1節黏彈性材料之奈米壓痕負載-位移關係 5.1.1 簡介…………………………………………………………………...………………….198 5.1.2 理論模型建立………………………….………………………………………….….….199 5.1.3 實驗步驟…………………………………………………………………………………203 5.1.3.1 材料………………………………………………………………..………………...203 5.1.3.2 試片製備…………………………………..………………………………...………204 5.1.3.3 奈米壓痕量測……………………………….…………………………...………….204 5.1.3.4 固定負載、卸載速率量測…………………………………………...…………....…204 5.1.3.5 潛變量測…………………………………………………………………….………205 5.1.4 結果與討論……………………………………………………………….………...……205 5.1.5 結論……………………………………………………………………………..…..……208 附表…………………………………………………………...……………………………..….210 附圖……..………………………………………………………………………………………211 5.2節 丙酮溶劑引發聚碳酸酯結晶之形態及奈米壓痕量測 5.2.1 簡介…………………………………………………………………………...………….219 5.2.2 實驗步驟……………………………………………………………...………………….220 5.2.2.1 材料…………………………………………………………………....…………….220 5.2.2.2 試片製備…………………………………………………………..…..…………….220 5.2.2.3 溶劑吸收…………………………………………………………….………………220 5.2.2.4 密度量測…………………………………………………………………………….220 5.2.2.5 熱性質量測……………………………………………………………………...…..220 5.2.2.6 X-ray繞射儀量測……………………………………………………………………221 5.2.2.7 光學顯微鏡觀察結晶及劈裂面形態……………………………………………...221 5.2.2.8 奈米壓痕量測……………………………………………………………………….221 5.2.3 結果與討論……………………………………………………………………….…..….222 5.2.4 結論………………………………………………………………………...………….…225 附表………………………………………………………………………...………...…………227 附圖……..………………………………………………………………………………………229 第六章 總結與未來展望 6-1總結……………………………………………………………………………………………235 6-2未來展望………………………………………………………………………………………236 附錄A 豆子吸收水之質傳模型求解…………………………………………………………….238 附錄B 黏彈性材料之柏格斯模型(Burgers model)……………………………………………...249 附錄C 聚甲基丙烯酸甲酯(PMMA)與氘化甲醇(CH3OD)裂縫癒合系統研究………………...262 參考文獻………………………………………………………………………………..…………281

    [1] R. L. Clough, K. T. Gillen, G. M. Malone, and J. S. Wallace: Color formation in irradiated polymers. Radiat. Phys. Chem. 48(5), 583-594 (1996).
    [2] D. A. Lewis, J. H. O'Donnell, J. L. Hedrick, T. C. Ward, and J. E. McGrath: Radiation-resistant, amorphous, all-aromatic poly(arylene ether sulfones): synthesis, physical behavior, and degradation characteristics. In: The Effects of Radiation on high-technology polymers, edited by E. Reichmanis and J. H. O'Donnell, ACS Symposium Series 381, 252-261 (1989), Chapter 15.
    [3] P. A. Dworjanyn, B. Fields, and J. L. Garnett: Effects of various additives on accelerated grafting and curing reactions initiated by UV and ionizing radiation. In: The Effects of Radiation on high-technology polymers, edited by E. Reichmanis and J. H. O'Donnell, ACS Symposium Series 381, 112-131 (1989), Chapter 8.
    [4] J. P. Harmon, A. G. Taylor, G. T. Schueneman, and E. P. Goldberg: Stability of UV/visible transmission spectra of cross-linked poly(methylphenylsiloxane) after gamma irradiation - A note. Polym. Degrad. Stab. 41(3), 319-322 (1993).
    [5] J. H. O'Donnell: Radiation chemistry of polymers. In: The Effects of Radiation on high-technology polymers, edited by E. Reichmanis and J. H. O'Donnell, ACS Symposium Series 381, 1-13 (1989), Chapter 1.
    [6] P. R. Young and W. S. Slemp: Space environmental effects on selected long duration exposure facility polymeric materials. In: Irradiation of polymeric materials processes, mechanisms, and applications, edited by E. Reichmanis, C. W. Frank, and J. H. O'Donnell, ACS Symposium Series 527, 278-304 (1993), Chapter 18.
    [7] L. A. Pruitt: The effects of radiation on the structural and mechanical properties of medical polymers. Adv. Polym. Sci. 162, 63-93 (2003).
    [8] L. A. Franks: Oxygen bleaching of gamma-radiation-induced optical absorption bands in polystyrene. Polym. Letters 2, 581-584 (1964).
    [9] K. T. Gillen, J. S. Wallace, and R. L. Clough: Dose-rate dependence of the radiation-induced discoloration of polystyrene. Radiat. Phys. Chem. 41(1/2), 101-113 (1993).
    [10] H. L. Whitaker and K. F. Johnson: Pre-irradiation environmental effects on radiation damage of polystyrene. Radiat. Phys. Chem. 41(1/2), 121-126 (1993).
    [11] I. J. Chiang, C. T. Hu, and S. Lee: Isothermal annealing of color centers in irradiated polystyrene in vacuum and air atmospheres. Mater. Chem. Phys. 70(1), 61-63 (2001).
    [12] H. Y. Kaptan and O. Güven: Effect of □-irradiation dose for the oxygen diffusion into polymers. J. Appl, Polym. Sci. 64(7), 1291-1294 (1997).
    [13] W. Schnabel: Pulse-radiolysis studies concerning oxidative-degradation processes in linear-polymers. Radiat. Phys. Chem. 28(3), 303-313 (1986).
    [14] E. C. Onyiriuka: The effect of high-energy radiation on the surface chemistry of polystyrene: A mechanistic study. J. Appl. Polym Sci. 47(12), 2187-2194 (1993).
    [15] T. N. Bowmer, J. H. O'Donnel: Radiation degradation of poly(olefin sulfone)s - A volatile product study. J. Macromol. Sci. Chem. A17(2), 243-263 (1982).
    [16] K. Takashika, A. Oshima, M. Kuramoto, T. Seguchi, and Y. Tabata: Temperature effects on radiation induced phenomena in polystyrene having atactic and syndiotactic structures. Radiat. Phys. Chem. 55(4), 399-408 (1999).
    [17] K. T. Gillen and R. L. Clough: A kinetic-model for predicting oxidative -degradation rates in combined radiation-thermal environments. J. Polym. Sci.: Polym. Chem. 23(10), 2683-2707 (1985).
    [18] S. G. Burnay and J. W. Hitchon: Prediction of service lifetimes of elastomeric seals during radiation aging. J. Nucl. Mater. 131(2-3), 197-207 (1985).
    [19] T. Seguchi: Accelerated radiation aging methodology of polymer materials. Trans. Amer. Nucl. Soc. 46, 360-361 (1984).
    [20] V. K. milinchuk, E. R. Klinshpont, and V. P. Kiryukhin: Effect of high-pressure on the formation and reactions of free-radicals in the radiolysis of polymers. Radiat. Phys. Chem. 21(6), 519-526 (1983).
    [21] J. S. Wallace, M. B. Sinclair, K. T. Gillen, and R. L. Clough: Color center annealing in □-irradiated polystyrene, under vacuum and air atmospheres. Radiat. Phys. Chem. 41(1/2), 85-100 (1993).
    [22] U. Holm, D. Horstmann, and S. Schacht: Oxygen diffusion and recovery of damage in irradiated polystyrene. Nucl. Instrum. Methods Phys. Res. B151(1-4), 453-456 (1999).
    [23] K. P. Lu, S. Lee, and C. P. Cheng: Transmittance in irradiated poly(methyl methacrylate) at elevated temperatures. J. Appl. Phys. 88(9), 5022-5027 (2000).
    [24] C. -K. Liu, C. -J. Tsai, C. -T. Hu, and S. Lee: Annihilation kinetics of color center in irradiated syndiotactic polystyrene at elevated temperatures. Polymer 46(15), 5645-5655 (2005).
    [25] K. P. Lu, S. Lee, and C. C. Han: Transmission in irradiated hydroxyethyl methacrylate copolymer at elevated temperatures. J. Mat. Res. 17(9), 2260-2265 (2002).
    [26] A. Charlesby: Characterization of macromolecular morphology by pulsed NMR spectroscopy. In: Radiation effects on polymers, edited by R. L. Clough and S. W. Shalaby, ACS Symposium Series 475, 193-217 (1991), Chapter 12.
    [27] A. Gupta, R. Liang, F. D. Tsay, and J. Moacanin: Characterization of a Dissociative Excited State in the Solid State: Photochemistry of Poly(methyl methacrylate). Photochemical Processes in Polymeric Systems. 5. Macromolecules, 13(6), 1696-1700 (1980).
    [28] S. -I. Ohnishi, Y. Nakajima, and I. Nitta: Mechanism of discoloration of irradiated polyvinyl chloride. J. Appl. Polym. Sci. 6(24), 629-638 (1962).
    [29] D. E. Winkler: Mechanism of polyvinyl chloride degradation and stabilization. J. Polym. Sci. 35(128), 3-16 (1959).
    [30] R. L. Clough, G. M. Malone, K. T. Gillen, J. S. Wallace, and M. B. Sinclair: Discoloration and subsequent recovery of optical polymers exposed to ionizing radiation. Polym. Degrad. Stab. 49(2), 305-313 (1995).
    [31] H. Y. Kaptan: ESR study on the effect of temperature on the diffusion of oxygen into PMMA and PVAc polymers. J. Appl. Polym. Sci. 71(7), 1203-1207 (1999).
    [32] G. Ungar and A. Keller: Effect of radiation on the crystals of polyethylene and paraffins: 1. Formation of the hexagonal lattice and the destruction of crystallinity in polyethylene. Polymer 21(11), 1273-1277 (1980).
    [33] G. Ungar and A. Keller: Radiation and the crystals of polyethylene and paraffins. In: Radiation effects on polymers, edited by R. L. Clough and S. W. Shalaby, ACS Symposium Series 475, 101-118 (1991), Chapter 7.
    [34] R. L. Clough: High-energy radiation and polymers: A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. B185, 8-33 (2001).
    [35] G. Natta, P. Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, and G. Moraglio: Crystallie high polymers of □-olefins. J. Am. Chem. Soc. 77(6), 1708-1710 (1955).
    [36] N. Ishihara, T. Seimiya, M. Kuramoto, and M. Uoi: Crystalline syndiotactic polystyrene. Macromolecules, 19(9), 2464-2465 (1986).
    [37] J. Crank: The Mathematics of Diffusion, 2nd ed. Oxford University Press, Oxford (1975).
    [38] T. Alfrey, JR., E. F. Gurnee, and W. G. Lloyd: Diffusion in glassy polymers. J. Polym. Sci. Part C. 12, 249-261 (1966).
    [39] I. J. Chiang, C. C. Chau, and S. Lee: The mass transport of ethyl acetate in syndiotacic polystyrene. Polym. Eng. Sci. 42(4), 724-732 (2002).
    [40] K. F. Chou, C. C. Han, and S. Lee: Water transport in 2-hydroxyethyl methacrylate copolymer irradiated by □ rays in air and related phenomena. J. Polym. Sci.: Part B: Polym. Phys. 38(5), 659-671 (2000).
    [41] K. F. Chou and S. Lee: The mass transport of methanolic ferric chloride hexahydrate solution in poly(methyl methacrylate) and related optical properties. Polymer 41(6), 2059-2068 (2000).
    [42] T. Wu, S. Lee, and W. -C. Chen: Acetone absorption in irradiated polycarbonate. Macromolecules 28(17), 5751-5757 (1995).
    [43] T. Wu and S. Lee: Carbon tetrachloride-induced crack healing in polycarbonate. J. Polym. Sci.: Part B: Polym. Phys. 32(12), 2055-2064 (1994).
    [44] H. B. Hopfenberg and H. L. Frisch: Transport of organic micromolecules in amorphous polymers. Polym. Letters 7(6), 405-409 (1969).
    [45] D. J. Enscore, H. B. Hopfenberg, and V. T. Stannett: Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres. Polymer 18(8), 793 (1977).
    [46] J. P. Harmon, S. Lee, and J. C. M. Li: Methanol transport in PMMA: The effect of mechanical deformation. J. Polym. Sci.: Part A: Polym. Chem. 25(12), 3215-3229 (1987).
    [47] J. P. Harmon, S. Lee, and J. C. M. Li: Anisotropic methanol transport in PMMA after mechanical deformation. Polymer 29(7), 1221-1226 (1988).
    [48] C. -K. Liu, C. -T. Hu, and S. Lee: Effect of compression and thickness on acetone transport in polycarbonate. Polym. Eng. Sci. 45(5), 687-693 (2005).
    [49] S. Lee: Fourteen-year-old aging study of the effect of thickness on methanol transport in crosslinked poly(methyl methacrylate). J. Mater. Res. 11(10), 2403-2045 (1996).
    [50] T. T. Wang and T. K. Kwei: Diffusion in glassy polymers. reexamination of vapor sorption data. Macromolecules 6(6), 919-921 (1973).
    [51] H. L. Frisch, T. T. Wang, and T. K. Kwei: Diffusion in glassy polymers. II. J. Polym. Sci.: Part A-2 7(5), 879-887 (1969).
    [52] T. T. Wang, T. K. Kwei, and H. L. Frisch: Diffusion in glassy polymers. III. J. Polym. Sci.: Part A-2 7(12), 2019-2028 (1969).
    [53] T. K. Kwei and H. M. Zupko: Diffusion in glassy polymers. I. J. Polym. Sci.: Part A-2 7(5), 867-877 (1969).
    [54] A. R. Berens and H. B. Hopfenberg: Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 19(5), 489 (1978).
    [55] N. A. Peppas and N. M. Franson: The swelling interface unmber as a criterion for prediction of diffusional solute release mechanisms in swellable polymers. J. Polym. Sci.: Part B: Polym. Phys. 21(6), 983-997 (1983).
    [56] C. B. Lin, S. Lee, and K. S. Liu: Methanol-induced crack healing in poly(methyl methacrylate). Polym. Eng. Sci. 30(21), 1399-1406 (1990).
    [57] H. -C. Hsieh, T. -J. Yang, and S. Lee: Crack healing in poly(methyl methacrylate) induced by co-solvent of methanol and ethanol. Polymer 42(3), 1227-1241 (2001).
    [58] J. P. Mercier, G. Groeninckx, and M. Lesne: Some aspects of vapor-induced crystallization of polycarbonate of bisphenol A. J. Polym. Sci.: Part C 16, 2059-2067 (1967).
    [59] G. L. Wilkes and J. Parlapiano: Solvent and vapor induced crystallization of bisphenol A polycarbonate. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 17, 937-942 (1976).
    [60] E. Turska and W. Benecki: Studies of liquid-induced crystallization of bisphenol A polycarbonate. J. Appl. Polym. Sci. 23(12), 3489-3500 (1979).
    [61] R. A. Ware, S. Tirtowidjojo, and C. Cohen: Diffusion and induced crystallization in polycarbonate. J. Appl. Polym. Sci. 26(9), 2975-2988 (1981).
    [62] I. N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47-57 (1965).
    [63] M. F. Doerner and W. D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601-609 (1986).
    [64] W. C. Oliver and G. M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564-1583 (1992).
    [65] W. C. Oliver and G. M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3-20 (2004).
    [66] B. Tang and A. H. W. Ngan: Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18(5), 1141-1148 (2003).
    [67] G. Feng and A. H. W. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17(3), 660-668 (2002).
    [68] T. Chudoba and F. Richter: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 148(2-3), 191-198 (2001).
    [69] T. Y. Tsui and G. M. Pharr: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14(1), 292-301 (1999).
    [70] A. H. W. Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17(10), 2604-2610 (2002).
    [71] A. A. Elmustafa and D. S. Stone: Indentation size effect in polycrystalline F.C.C. metals. Acta Mater. 50(14), 3641-3650 (2002).
    [72] A. Factor, J. C. Carnahan, S. B. Dorn, and P. C. Van Dort: The chemistry of gamma-irradiated bisphenol-A polycarbonate. Polym. Degrad. Stab. 45(1), 127-137 (1994).
    [73] J. P. Harmon, J. F. Gaynor, and A. G. Taylor: Approaches to optimize scintillator polymers for optical radiation hardness. Radiat. Phys. Chem. 41(1/2), 153-164 (1993).
    [74] J. P. Harmon, J. F. Gaynor: The effect of gamma irradiation on color center formation in optical polymers. J. Polym. Sci.: Part B: Polym. Phys. 31(2), 235-236 (1993).
    [75] J. P. Harmon, E. Biagtan, G. T. Schueneman, and E. P. Goldberg: Effects of ionizing radiation on the optical properties of polymers. In: Irradiation of polymers, edited by R. L. Clough and S. W. Shalaby, ACS Symposium Series, 620, 302-312 (1996), Chapter 23.
    [76] A. G. Taylor and J. P. Harmon: Structure and dose rate effects on optical radiation hardness in scintillator polymers. Radiat. Phys. Chem. 41(1/2), 115-119 (1993).
    [77] C. B. Lin and S. Lee: Effect of methanol on optical property of irradiated poly(methyl methacrylate). J. Appl. Polym. Sci. 44(12), 2213-2224 (1992).
    [78] L. A. Wall and D. W. Brown: □-irradiation of polymethyl methacrylate and polystyrene. J. Phys. Chem. 61(2), 129-136 (1957).
    [79] T. N. Murakami, Y. Fukushima, Y. Hirano, Y. Tokuoka, M. Takahashi, and N. Kawashima: Surface modification of polystyrene and poly(methyl methacrylate) by active oxygen treatment. Colloid. Surface. B: Biointerfaces 29(2-3), 171-179 (2003).
    [80] K. T. Gillen and R. L. Clough: Rigorous experimental confirmation of a theoretical model for diffusion-limited oxidation. Polymer 33(20), 4358-4365 (1992).
    [81] K. T. Gillen and R. L. Clough: Quantitative confirmation of simple theoretical models for diffusion-limited oxidation. In: Radiation effects on polymers, edited by R. L. Clough and S. W. Shalaby, ACS Symposium Series 475, 457-472 (1991), Chapter 28.
    [82] Y. -S. Lin, S. Lee, B. C. Lin, and C. P. Cheng: EPR studies of high dose gamma-irradiated poly(methyl methacrylate). Mater. Chem. Phys. 78(3), 847-851 (2003).
    [83] A. Y. Orlov and V. I. Feldman: Effect of phase condition on the low-temperature radiation-induced degradation of polycarbonate as studied by spectroscopic techniques. Polymer 42(5), 1987-1993 (2001).
    [84] F. Szöcs, M. Klimová, and J. Bartoš: An ESR study of the influence of fatigue on the decay of free radicals in gamma irradiated polycarbonate. Polym. Degrad. Stab. 55(2), 233-235 (1997).
    [85] A. K. Kalkar, S. Kundagol, S. Chand, and S. Chandra: Effect of gamma-irradiation on structural and electrical properties of poly(bisphenol-A carbonate) films. Radiat. Phys. Chem. 39(5), 435-442 (1992).
    [86] M. M. Hamada, P. R. Rela, F. E. da Costa, and C. H. de Mesquita: Radiation damage studies on the optical and mechanical properties of plastic scintillators. Nucl. Instrum. Methods Phys. Res. A422(1-3), 148-154 (1999).
    [87] V. K. Milinchuk, N. M. Bolbit, E. R. Klinshpont, V. I. Tupikov, G. S. Zhdanov, S. B. Taraban, I. P. Shelukhov, and A. S. Smoljanskii: Radiation-induced chemical processes in polystyrene scintillators. Nucl. Instrum. Methods Phys. Res. B151(1-4), 457-461 (1999).
    [88] P. C. Trimmer, J. B. Schlenoff, and K. F. Johnson: Spatially resolved UV-VIS characterization of radiation-induced color centers in poly(styrene) and poly(vinyltoluene). Radiat. Phys. Chem. 41(1/2), 57-64 (1993).
    [89] T. E. Herod, K. F. Johnson, and J. B. Schlenoff: Recovery of radiation-induced color centers in poly(vinyltoluene). Radiat. Phys. Chem. 41(1/2), 65-75 (1993).
    [90] J. Schut, M, Stamm, M. Dumon, and J-F Gérard: DGEBA monomer as a solvent for syndiotactic polystyrene. Macromol. Symp. 198, 355-362 (2003).
    [91] G. P. Ravanetti and M. Zini: A study on the thermal degradation kinetics of syndiotactic polystyrene by thermogravimetric analysis. Thermochim. Acta, 207, 53-64 (1992).
    [92] F. Xue, D. Takeda, T. Kimura, and M. Minabe: Effect of organic peroxides on the thermal decomposition of expanded polystyrene with the addition of a-methylstyrene. Polym. Degrad. Stab. 83(3), 461-466 (2004).
    [93] C. Huggenberger and H. Fischer: 32. Absorption spectra and termination kinetics of transient free radicals in solution observed by UV./VIS. Spectroscopy with modulated excitation. Helv. Chim. Acta, 64(1), 338-353 (1981).
    [94] J. E. Jordan, D. W. Pratt, and D. E. Wood: Direct observation of the optical absorption spectra of reactive free radicals at room temperature. J. Am. Chem. Soc. 96(17), 5588-5590 (1974).
    [95] M. Chipara, R. Benson, M. D. Chipara, and J. R. Reyes: ESR investigations on irradiated polystyrene. Nucl. Instrum. Methods Phys. Res. B208, 390-394 (2003).
    [96] L. A. Harrah: ESR of radicals produced in Co60 gamma-irradiated polystyrene. In: Organic Solid State Chemistry, edited by G. Alder, Gordon and Breach Science publishers, New York (1969), pp. 197-210.
    [97] W. W. Parkinson and R. M. Keyser: Polystyrene and Related Polymers. In: The Radiation Chemistry of Macromolecules Volume II, edited by M. Dole, Academic Press, New York (1973), Chapter 5.
    [98] A. K. Mishra, P. Agrawal, and R. Bajpai: Radiational Hardening of poly(vinylidene fluoride)-poly(methyl methacrylate)-polystyrene ternary blends. J. Appl. Polym. Sci. 92(5), 3107-3111 (2004).
    [99] S. Andjelić and R. E. Richard: Crystallization behavior of ultrahigh molecular weight polyethylene as a function of in vacuo □-irradiation. Macromolecules, 34(4), 896-906 (2001).
    [100] A. S. Vaughan snd G. C. Stevens: Irradiation and the glass transition in PEEK. Polymer, 42(21), 8891-8895 (2000).
    [101] A. S. Vaughan snd G. C. Stevens: On radiation effects in poly(ethylene terephthalate): a comparison with poly(ether ether ketone). Polymer, 36(8), 1541-1547 (1995).
    [102] S. C. J. Loo, C. P. Ooi, and Y. C. F. Boey: Radiation effects on poly (lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA). Polym. Degrad. Stab. 83(2), 259-265 (2004).
    [103] A. A. Koptelov, S. V. Karyazov, and O. F. Shlenskii: The kinetics of crystallization of poly(tetrafluoroethylene) by the action of □-radiation. High Energ. Chem. 37(3), 151-156 (2003).
    [104] M. S. Rabello and J. R. White: Crystallization and melting behaviour of photodegraded polypropylene - I. Chemi-crystallization. Polymer, 38(26), 6380 -6387 (1997).
    [105] O. Greis, Y. Xu, T. Asano, and J. Petermann: Morphology and structure of syndiotactic polystyrene. Polymer, 30(4), 590-594 (1989).
    [106] C. De Rosa, G. Guerra, V. Petraccone, and P. Corradini: Crystal structure of the □-form of syndiotactic polystyrene. Polym. J. 23(12), 1435-1442 (1991).
    [107] C. De Rosa, M. Rapacciuolo, G. Guerra, and V. Petraccone: On the crystal structure of the orthorhombic form of syndiotactic polystyrene. Polymer, 33(7), 1423-1428 (1992).
    [108] C. De Rosa, O. R. de Ballesteros, M. D. Gennaro, and F. Auriemma: Crystallization from the melt of □ and □ forms of syndiotactic polystyrene. Polymer, 44(6), 1861-1870 (2003).
    [109] G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, and P. Corradini: Polymorphism in melt crystallized syndiotactic polystyrene samples. Macromolecules, 23(5), 1539-1544 (1990).
    [110] C. De Rosa: Crystal structure of the trigonal modification (□ form) of syndiotactic polystyrene. Macromolecules, 29(26), 8460-8465 (1996).
    [111] V. Vittoria, A. R. Filho, and F. De Candia: Structural Organization of syndiotactic polystyrene films crystallized in the □ form. J. Macromol. Sci. Phys. B30(1&2), 155-170 (1991).
    [112] V. Vittoria, A. R. Filho, and F. De Candia: Structural Organization of syndiotactic polystyrene films crystallized in the □ form. J. Macromol. Sci. Phys. B31(2), 133-148 (1992).
    [113] C. Wang, Y. -C. Hsu, and C. -F. Lo: Melting behavior and equilibrium melting temperatures of syndiotactic polystyrene in □ and □ forms. Polymer, 42(20), 8447-8460 (2001).
    [114] K. Tashiro, Y. Ueno, A. Yoshioka, and M. Kobayashi: Molecular mechanism of solvent-induced crystallization of syndiotactic polystyrene glass. 1. Time-resolved measurements of infrared/Raman spectra and x-ray diffraction. Macromolecules, 34(2), 310-315 (2001).
    [115] K. Tashiro, Y. Ueno, A. Yoshioka, F. Kaneko, and M. Kobayashi: Structural changes in solvent-induced crystallization of syndiotactic polystyrene viewed from the time-resolved measurements of infrared/Raman spectra and x-ray diffraction. Macromol. Symp. 141, 33-46 (1999).
    [116] F. De Candia, M. Carotenuto, L. Guadagno, and V. Vittoria: Polymorphism of syndiotactic polystyrene. Morphology of the solvent-induced crystalline forms. J. Macromol. Sci. Phys. B35(2), 265-275 (1996).
    [117] F. De Candia, L. Guadagno, and V. Vittoria: Phase organization of solvent-crystallized syndiotactic polystyrene films. J. Macromol. Sci. Phys. B33(3&4), 347-356 (1994).
    [118] V. Vittoria and A. R. Filho: Transport properties of dichloromethane in glassy polymers. II. Amorphous syndiotactic polystyrene films. J. Appl. Polym. Sci. 49(2), 247-256 (1993).
    [119] V. Vittoria, R. Russo, and F. de Candia: Solvent-induced crystallization of syndiotactic polystyrene in different liquids-sorption and diffusion phenomena. Polymer, 32(18), 3371-3375 (1991).
    [120] V. Vittoria, R. Russo, and F. de Candia: Solvent-induced crystallization of syndiotactic polystyrene in toluene. Makromol. Chem. Macromol. Symp. 39, 317-321 (1990).
    [121] A. Immirzi, F. de Candia, P. Iannelli, A. Zambelli, and V. Vittoria: Solvent-induced polymorphism in syndiotactic polystyrene. Makromol. Chem. Rapid Commun. 9(11), 761-764 (1988).
    [122] Y. Chatani, Y. Shimane, T. Inagaki, T. Ijitsu, T. Yukinari, and H. Shikuma: Structural study on syndiotactic polystyrene: 2. Crystal structure of molecular compound with toluene. Polymer, 34(8), 1620-1624 (1993).
    [123] V. Vittoria, F. de Candia, P. Iannelli, and A. Immirzi: Solvent-induced crystallization of glassy syndiotactic polystyrene. Makromol. Chem. Rapid Commun. 9(11), 765-769 (1988).
    [124] E. M. Woo, Y. S. Sun and M. L. Lee: Crystal forms in cold-crystallized syndiotactic polystyrene. Polymer, 40(15), 4425-4429 (1999).
    [125] R. H. Lin and E. M. Woo: Melting behavior and identification of polymorphic crystals in syndiotactic polystyrene. Polymer, 41(1), 121-131 (2000).
    [126] Y. S. Sun and E. M. Woo: Correlation between thermal behavior and crystalline morphology in □-form syndiotactic polystyrene. Macromol. Chem. Phys., 202(9), 1557-1568 (2001).
    [127] E. M. Woo and F. S. Wu: On the multiple melting behavior of polymorphic syndiotactic polystyrene and its behavior in a miscible state. Macromol. Chem. Phys., 199(9), 2041-2049 (1998).
    [128] R. M. Ho, C. P. Lin, P. Y. Hseih, and T. M. Chung: Isothermal crystallization-induced phase transition of syndiotactic polystyrene polymorphism. Macromolecules, 34(19), 6727-6736 (2001).
    [129] Y. Li, J. He, W. Qiang, and X. Hu: Effects of crystallization temperature on the polymorphic behavior of syndiotactic polystyrene. polymer, 43(8), 2489-2494 (2002).
    [130] Y. S. Sun and E. M. Woo: Morphology and crystal structure of cold-crystallized syndiotactic polystyrene. Polymer, 42(5), 2241-2245 (2001).
    [131] F. -C. Chiu, K. -Y. Shen, S. H. Y. Tsai, and C. -M. Chen: Pre-melting temperature on the isothermal melt crystallization and multiple melting behavior of syndiotactic polystyrene. Polym. Eng. Sci. 41(5), 881-889 (2001).
    [132] R. -M. Ho, C. -P. Lin, H. -Y. Tsai, and E. -M. Woo: Metastability studies of syndiotactic polystyrene polymorphism. Macromolecules, 33(17), 6517-6526 (2000).
    [133] P. Rizzo, M. Lamberti, A. R. Albunia, O. R. de Ballesteros, and G. Guerra: Crystalline orientation in syndiotactic polystyrene cast films. Macromolecules, 35(15), 5854-5860 (2002).
    [134] J. S. Forsythe, D. J. T. Hill, N. Calos, A. L. Logothetis, and A. K. Whittaker: Radiation chemistry of poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether): Effects of oxygen and crystallinity. J. Appl. Polym. Sci. 73(5), 807-812 (1999).
    [135] M. Avrami: Kinetics of Phase Change. I General Theory. J. Chem. Phys. 7(12), 1103-1112 (1939).
    [136] M. Avrami: Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 8(2), 212-224 (1940).
    [137] M. Avrami: Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 9(2), 177-184 (1941).
    [138] T. Ozawa: kinetics of non-isothermal crystallization. Polymer 12(3), 150-158 (1971).
    [139] H. E. Kissinger: Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stds. 57(4), 217-221 (1956).
    [140] H. E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702-1706 (1957).
    [141] A. Ziabicki and P. Sajkiewicz: Crystallization of polymers in variable external conditions. III: Experimental determination of kinetic characteristics. Colloid Polym. Sci. 276(8), 680-689 (1998).
    [142] G. Z. Pagageorgiou and G. P. Karayannidis: Crystallization and melting behaviour of poly(butylenes naphthalene-2,6-dicarboxylate). Polymer, 42(6), 2637-2645 (2001).
    [143] R. -M. Ho, P. -Y Hseih, C. -C. Yang, and J. -J. Lin: Crystallization kinetics for low-ether-content polyether-polyester block copolymers with amide linkages. J. Polym. Sci.: Part B: Polym. Phys. 39(20), 2469-2480 (2001).
    [144] K. P. Chuah, S. N. Gan, and K. K. Chee: Determination of Avrami exponent by differential scanning calorimetry for non-isothermal crystallization of polymers. Polymer 40(1), 253-259 (1998).
    [145] Y. -C. Ou, M. -Y. Si, and Z. -Z. Yu: Nonisothermal crystallization kinetics of in situ polyamide-6 blended with poly(phenylene oxide). J. Appl. Polym. Sci. 73(5), 767-775 (1999).
    [146] L. I. Minkova and P. L. Maganini: Non-isothermal crystallization kinetics of poly(phenylene sulfide)/vectra-b blends. Polymer, 36(10), 2059-2063 (1995).
    [147] R. de Juana, A. Jauregui, E. Calahorra, and M. Cortázar: Non-isothermal crystallization of poly(hydroxy ether of bisphenol-A)/poly(□-caprolactone), PH/PCL blends. Polymer, 37(15), 3339-3345 (1996).
    [148] P. Sajkiewica, L. Carpaneto, and A. Wasiak: Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalate). Polymer, 42(12), 5365-5370 (2001).
    [149] T. Liu, Z. Mo, S. Wang, and H. Zhang: Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 37(3), 568-575 (1997).
    [150] P. Supaphol, N. Dangseeyun, and P. Srimoaon: Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylenes terephthalate) blends. Polym. Testing 23(2), 175-185 (2004).
    [151] P. Supaphol, N. Dangseeyun, P. Srimoaon, and M. Nithitanakul: Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters. Thermochim. Acta 406(1-2), 207-220 (2003).
    [152] S. W. Lee, M. Ree, C. E. Park, Y. K. Jung, C. -S. Park, Y. S. Jin, and D. C. Bae: Synthesis and non-isothermal crystallization behaviors of poly(ethylene isophthalate-co-terephthalate)s. Polymer, 40(25), 7137-7146 (1999).
    [153] K. Nakamura, T. Watanabe, K. Katayama: Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J. Appl. Polym. Sci. 16(5), 1077-1091 (1972).
    [154] A. Jeziorny: Parameters characterizing the kinetics of the non-isoyhermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer, 19(10), 1142-1144 (1978).
    [155] H. Zhang and B. S. Mitchell: A method for determining crystallization kinetic parameters from one nonisothermal calorimetric experiment. J. Mater. Res. 15(4), 1000-1007 (2000).
    [156] C. Cazé, E. Devaux, A. Crespy, and J. P. Cavrot: A new method to determine the Avrami exponent by d.s.c studies of non-isothermal crystallization from the molten state. Polymer 38(3), 497-502 (1997).
    [157] Q. Chen, Y. Yu, T. Na, H. Zhang, and Z. Mo: Isothermal and nonisothermal melt-crystallization kinetics of syndiotactic polystyrene. J. Appl. Polym. Sci. 83(12), 2528-2538 (2002).
    [158] F. -C. Chiu, C. -G. Peng, and Q. Fu: Non-isothermal crystallization and multiple melting behavior of syndiotactic polystyrene - pre-melting temperature effects. Polym. Eng. Sci. 40(11), 2397-2406 (2000).
    [159] J. -Y. Park, M. H. Kwon, and O. O. Park: Nonisothermal crystallization behavior of SPS/APS blends. J. Polym. Sci.: Part B: polym. Phys. 38(23), 3001-3008 (2000).
    [160] T. -M. Wu, S. -F. Hsu, and J. -Y. Wu: Nonisothermal crystallization behavior of syndiotactic polystyrene/montmorillonite nanocomposites. J. Polym. Sci.: Part B: polym. Phys. 41(6), 560-570 (2003).
    [161] S. Cimmino, E. D. Pace, E. Martuscelli, and C. Silvestre: Syndiotactic polystyrene: crystallization and melting behaviour. Polymer, 32(6), 1080-1083 (1991).
    [162] H. Ouyang and S. Lee: An alternative analysis of water vapor and gas transport in polyimide films. J. Mater. Res. 12(10), 2794-2798 (1997).
    [163] W. R. Vieth, J. M. Howell, and J. H. Hsieh: Dual sorption theory. J. Membr. Sci. 1, 177-220 (1976).
    [164] F. De Candia, R. Russo, V. Vittoria, and A. Peterlin: Transport properties of annealed, drawn Low-Density Polyethylene (LDPE). J. Polym. Sci.: Polym. Phys. Ed. 18(10), 2083-2096 (1980).
    [165] A. Peterlin, J. L. Williams, and V. Stannett: Sorption of organic vapors into drawn and undrawn polyethylene. J. Polym. Sci.: Part A-2 5(5), 957-972 (1967).
    [166] J. L. Williams and A. Peterlin: Transport properties of methylene chloride in drawn polyethylene as a function of the draw ratio. J. Polym. Sci.: Part A-2 9(8), 1483-1494 (1971).
    [167] C. C. Chau and D. L. Fear: Chloroform transport in stress-whitened polypropylene. Polym. Eng. Sci. 26(22), 1533-1542 (1986).
    [168] G. W. Miller, S. A. D. Visser, and A. S. Morecroft: On the solvent stress-cracking of polycarbonate. Polym. Eng. Sci. 11(2), 73-82 (1971).
    [169] R. P. Kambour, F. E. Karasz, and J. H. Daane: Kinetic and equilibrium phenomena in the system: acetone vapor and polycarbonate film. J. Polym. Sci.: Part A-2 4(3), 327-347 (1966).
    [170] E. Turska and W. Przygocki: Beitrag zur kinetik der kristallisation der polycarbonate unter dem einflub von quellmitteln. Faserforsch. Textiltech. 18, 91-94 (1967).
    [171] C. C. Chau and J. C. M. Li: Diffusion of methanol in PMMA shear bands. Philos. Mag. A 44(2), 493-498 (1981).
    [172] A. J. Hill, K. J. Heater, and C. M. Agrawal: The effects of physical aging in polycarbonate. J. Polym. Sci.: Part B: Polym. Phys. 28(3), 387-405 (1990).
    [173] K. K. K. Koziol, K. Dolgner, N. Tsuboi, J. Kruse, V. Zaporojtchenko, S. Deki, and F. Faupel: Dispersion of gold in polycarbonate by vapor-induced crystallization. Macromolecules 37(6), 2182-2185 (2004).
    [174] W. L. Wang, J. R. Chen, and S. Lee: Solvent-induced stresses in glassy polymer: Elastic model. J. Mater. Res. 14(10), 4111-4118 (1999).
    [175] T. Tanaka, S. T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, and T. Amiya: Mechanical instability of gels at the phase transition. Nature (London) 325(6107), 796-798 (1987).
    [176] Y. Hirokawa, J. Kucera, S. T. Sun, and T. Tanaka: Mechanical instability of gels undergoing large swelling. In: Physical Optics of Dynamic Phenomena and Processes in Macromolecular Systems, edited by B. Sedlacek, Walter de Gruyter & Co., Berlin, Germany (1985), pp.197-204.
    [177] K. F. Chou, S. Lee, and J. P. Harmon: Evolution of Surface Morphology in 2-Hydroxyethyl Methacrylate copolymer exposed to □ radiation. Macromolecules 36(15), 5683-5688 (2003).
    [178] C. W. Vertucci: The kinetics of seed imbibition: Controlling factors and relevance to seeding vigor. In: Seed Moisture, edited by P. C. Stanwood and M. B. McDonald, Crop Science Society of America, Madison, Wisc. (1989), pp. 93-115.
    [179] S. S. Deshpande and M. Cheryan: Microstructure and water uptake of Phaseolus and winged beans. J. Food Sci. 51(5), 1218-1223 (1986).
    [180] G. N. Agbo, G. L. Hosfield, M. A. Uebersax and K. Klomparens: Seed microstructure and its relationship to water uptake in isogenic lines and a cultivar of dry beans (Phaseolus vulgaris L.). Food Microstruc. 6(1), 91-102 (1987).
    [181] T. Marbach and A. M. Mayer: Permeability of seed coats as related to drying conditions and metabolism of phenolics. Plant Physiol. 54, 817-820 (1974).
    [182] T. Marbach and A. M. Mayer: Changes in catechol oxidase and permeability of water in seed coats of Pisum elatius during seed development and maturation. Plant Physiol. 56, 93-96 (1975).
    [183] R. E. Tully, M. E. Musgrave and A. C. Leopold: The seed coat as a control of imbibitional chilling injury. Crop Sci. 21(2), 312-317 (1981).
    [184] K. H. Hsu: A diffusion model with a concentration-dependent diffusion coefficient for describing water movement in legumes during soaking. J. Food Sci. 48(2), 618-622, 645 (1983).
    [185] H. G. Schwartzberg and R. Y. Chao: Solute diffusivities in leaching processes. Food Technol. 36(2), 73-86 (1982).
    [186] J. M. Del Valle, D. W. Stanley and M. C. Bourne: Water absorption and Swelling in dry bean seeds. J. Food Proc. Preserv. 16(2), 75-98 (1992).
    [187] N. Abu-Ghannam: Modelling textural changes during the hydration process of red beans. J. Food Eng. 38(3), 341-352 (1998).
    [188] N. Abu-Ghannam and B. Mckenna: Hydration kinetics of red kidney beans (Phaseolus vulgaris L.). J. Food Sci. 62(3), 520-523 (1997).
    [189] Z. M. A. Kader: Study of some factors affecting water absorption by faba beans during soaking. Food Chem. 53(3), 235-238 (1995).
    [190] A. Caprez, E. Arrigoni, H. Neukom and R. Amado: Improvement of the sensory properties of two different dietary fibre sources through enzymatic modification. Lebensm. -Wiss. u. -Technology. 20(5), 245-250 (1987).
    [191] J. Rie, M. Miura, and S. -I. Taneya: Analysis of water absorption rate for soybeans. Nippon Shokuhin Kagaku Kogaku Kaishi 43(3), 288-298 (1996).
    [192] M. D. Castillo, E. J. Martínez, H. H. L. González, A. M. Pacin, and S. L. Resnik: Study of mathematical models applied to sorption isotherms of Argentinean black bean varieties. J. Food. Eng. 60(4), 343-348 (2003).
    [193] H. S. Carslaw and J. C. Jaeger: Conduction of Heat in Solids, 2nd ed. Oxford University Press, Oxford (1959), pp.30.
    [194] P. Rayas-Duarte and J. H. Rupnow: Gamma-irradiation affects some physical properties of dry bean (Phaseolus vulgaris) starch. J. Food. Sci. 58(2), 389-394 (1993).
    [195] P. Rayas-Duarte and J. H. Rupnow: Gamma-irradiated dry bean (Phaseolus vulgaris) starch: Physicochemical properties. J. Food Sci. 59(4), 839-843 (1994).
    [196] Q. Liu, Y. Kuang, and Y. Zheng: Studies on the methods of identification of irradiated food I. seedling growth test. Radiat. Phys. Chem. 42(1-3), 387-389 (1993).
    [197] C. A. B. Silva, R. P. Bates, and J. C. Deng: Influence of pre-soaking on black bean cooking kinetics. J. Food Sci. 46(6), 1721-1725 (1981).
    [198] C. Reyes-Moreno and O. Paredes-López: Hard-to-cook phenomenon in common beans-A review. Crit. Rev. Food Sci. 33(3), 227-286 (1993).
    [199] L. F. de Leon, L. G. Elias, and R. Bressani: Effect of salt solutions on the cooking time, nutritional and sensory characteristics of common beans (Phaseolus vulgaris). Food Res. Int. 25(2), 131-136 (1992).
    [200] S. Kon: Effect of soaking temperature on cooking and nutritional quality of beans. J. Food Sci. 44, 1329-1340 (1979).
    [201] M. -W. Byun, J. -H. Kwon, and T. Mori: Improvement of physical properties of soybeans by gamma irradiation. Radiat. Phys. Chem. 42(1-3), 313-317 (1993).
    [202] N. R. Moody, W. W. Gerberich, N. Burnham, and S. P. Baker, eds. Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA (1998).
    [203] S. P. Baker, R. F. Cook, S. G. Corcoran, and N. R. Moody, eds. Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA (2001).
    [204] M. T. Attaf: Connection between the loading curve models in elastoplastic indentation. Mater. Lett. 58(27-28), 3491-3498 (2004).
    [205] Y. -T. Cheng and C. -M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73(5), 614-616 (1998).
    [206] M. L. Oyen and R. F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18(1), 139-150 (2003).
    [207] L. Cheng, X. Xia, W. Yu, L. E. Scriven, and W. W. Gerberich: Flat-punch indentation of viscoelastic material. J. Polym. Sci., Part B: Polym. Phys. 38(1), 10-22 (2000).
    [208] M. Sakai and S. Shimizu: Indentation rheometry for glass-forming materials. J. Non-cryst. Solids 282(2-3), 236-247 (2001).
    [209] M. Sakai, S. Shimizu, and S. Ito: Viscoelastic indentation of silicate glasses. J. Am. Ceram. Soc. 85(5), 1210-1216 (2002).
    [210] M. L. Oyen, R. F. Cook, J. A. Emerson and N. R. Moody: Indentation responses of time-dependent films on stiff substrates. J. Mater. Res. 19(8), 2487-2497 (2004), 19(10), 3120-3121 (2004).
    [211] B. J. Briscoe, K. S. Sebastian, and S. K. Sinha: Application of the compliance method to microhardness measurements of organic polymers. Philos. Mag. A. 74(5), 1159-1169 (1996).
    [212] B. J. Briscoe, L. Fiori, and E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31(19), 2395-2405 (1998).
    [213] W. Nowacki: Thermoelasticity. 2nd ed. Pergamon, Oxford, England (1986).
    [214] E. H. Lee and J. R. M. Radok: The contact Problem for viscoelastic bodies. ASME J. Appl. Mech. 30, 438-444 (1960).
    [215] L. Cheng, X. Xia, L. E. Scriven, and W. W. Gerberich: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37(1), 213-226 (2005).
    [216] T. C. T. Ting: The contact stresses between a rigid indenter and a viscoelastic half-space. ASME J. Appl. Mech. 33, 845-854 (1966).
    [217] T. C. T. Ting: Contact problems in the linear theory of viscoelasticity. ASME J. Appl. Mech. 35, 248-254 (1968).
    [218] H. Bückle: Mikrohärterprüfung und ihre Anwendung. Berliner Union, Stuttgart, Germany (1965).
    [219] G. E. Dieter: Mechanical Metallurgy. McGraw-Hill, New York (1988).
    [220] I. M. Ward: Mechanical Properties of Solid Polymers. 2nd ed. Wiley, New York (1983).
    [221] S. Yang, Y. -W. Zhang, and K. Zeng: Analysis of nanoindentation creep for polymeric materials. J. App. Phys. 95(7), 3655-3666 (2004)
    [222] C. Y. Zhang, Y. W. Zhang, and K. Y. Zeng: Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate. J. Mater. Res. 19(10), 3053-3061 (2004).
    [223] W. Brostow, J. Kubát, and M. M. kubát: Mechanical properties. In: Physical properties of polymers handbook, edited by J. E. Mark, AIP Press, New York (1996). Chapter 23.
    [224] G. V. Di Filippo, M. E. González, M. T. Gasiba, and A. V. Müller: Crystalline Memory on polycarbonate. J. Appl. Polym. Sci. 34(5), 1959-1966 (1987).
    [225] I. Daniewska: Solvent-vapor-induced crystallization of branched polydisperse polycarbonate. J. Appl. Polym. Sci. 31(8), 2401-2405 (1986).
    [226] E. Turska and W. Benecki: Studies on swelling and liquid-induced crystallization of polycarbonates. J. Polym. Sci. Sym. 44, 59-64 (1974).
    [227] V. A. Prietzschk: Die Kristallstruktur des polycarbonats aus 4,4’-Dioxydiphenyl-2,2-propan. Kolloid-Z. 156(1), 8-14 (1958).
    [228] J. Li, E. T. Thostenson, T. -W. Chou, and L. Riester: An investigation of thin-film coating/substrate systems by nanoindentation. ASME J. Eng. Mater. Technol. 120(2), 154-162 (1998).
    [229] T. -H. Fang and W. -J. Chang: Nanoindentation characteristics on polycarbonate polymer film. Microelectr. J. 35(7), 595-599 (2004).
    [230] T. -H. Fang, W. -J. Chang, and S. -L. Tsai: Nanomechanical characterization of polymer using atomic force microscopy and nanoindentation. Microelectr. J. 36(1), 55-59 (2005).
    [231] B. Du, O. K. C. Tsui, Q. Zhang, and T. He: Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy. Langmuir 17(11), 3286-3291 (2001).
    [232] A. C. M. Chong and D. C. C. Lam: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14(10), 4103-4110 (1999).
    [233] C. Klapperich and K. Komvopoulos: Nanomechanical properties of polymers determined from nanoindentation experiments. ASME J. Tribol. 123(3), 624-631 (2001).
    [234] D. Drechsler, A. Karbach and H. Fuchs: Nanoindentation on polycarbonate/polymethyl methacrylate blends. Appl. Phys. A Mater. Sci. Proc. 66, S825-S829 (1998).
    [235] S. Akita, H. Nishijima, T. Kishida, and Y. Nakayama: Nanoindentation of polycarbonate using carbon nanotube tip. Jpn. J. Appl. Phys. Part 1 39(12B), 7086-7089 (2000).
    [236] H. Lu, B. Wang, J. Ma, G. Huang, and H. viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7(3-4), 189-207 (2003).
    [237] R. J. Young and P. A. Lovell: Introduction to polymers. 2nd ed. Chapman & Hall, New York (1991).
    [238] D. Debier, A. M. Jonas, and R. Legras: Blends of polycarbonate and Acrylic polymers: Crystallization of polycarbonate. J. Polym. Sci.: Part B: Polym. Phys. 36(12), 2197-2210 (1998).
    [239] J. P. Mercier and R. Legras: Correlation between the enthalpy of fusion and the specific volume of crystallized polycarbonate of bisphenol A. Polym. Letters 8, 645-650 (1970).
    [240] F. Gallez, R. Legras, and J. P. Mercier: Some aspects of the crystallization of bisphenol-A polycarbonate. Polym. Eng. Sci. 16(4), 276-283 (1976).
    [241] S. Lee and J. C. M. Li: Summation of infinite series related to roots of certain functions. Int. J. Math. Educ. Sci. Technol. 19(1), 89-93 (1988).
    [242] P. P. Wang, S. Lee, and J. P. Harmon: Ethanol-induced crack healing in poly(methyl methacrylate). J. Polym. Sci.: Part B: Polym. Phys. 32(7), 1217-1227 (1994).
    [243] M. Kawagoe, M. Nakanishit, J. Qiu, and M. Morita: Growth and healing of a surface crack in poly(methyl methacrylate) under case II diffusion of methanol. Polymer 38(24), 5969-5975 (1997).
    [244] S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan: Autonomic healing of polymer composites. Nature 409(6822), 794-797 (2001), 415(6873), 817 (2002).
    [245] S. M. Jang and S. Lee: Mechanical healing of potassium chloride single crystals. J. Am. Ceram. Soc. 73(3), 659-664 (1990).
    [246] R. P. Wool: Material response and reversible cracks in viscoelastic polymers. Polym. Eng. Sci. 18(4), 1057-1061 (1978).
    [247] R. P. Wool and K. M. O'Connor: Craze healing in polymer glasses. Polym. Eng. Sci. 21(14), 970-977 (1981).
    [248] R. P. Wool and K. M. O'Connor: A theory of crack healing in polymers. J. Appl. Phys. 52(10), 5953-5963 (1981).
    [249] R. P. Wool and K. M. O'Connor: Time dependence of crack healing. J. Polym. Sci.: Part C: Polym. Lett. 20(1), 7-16 (1982).
    [250] Y. H. Kim and R. P. Wool: A theory of healing at a polymer-polymer interface. Macromolecules 16(7), 1115-1120 (1983).
    [251] P. G. de Gennes: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55(2), 572-579 (1971).
    [252] S. Prager and M. Tirrel: The healing process at polymer-polymer interfaces. J. Chem. Phys. 75(10), 5194-5198 (1981).
    [253] K. Jud, H. H. Kausch, and J. G. Williams: Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci. 16(1), 204-210 (1981).
    [254] H. H. Kausch and K. Jud: Molecular aspects of crack formation and healing in glassy polymers. Plast. Rub. Proc. Appl. 2(3), 265-268 (1982).
    [255] C. C. Yu, C. B. Lin, and S. Lee: Theory for the rate of crack closure. J. Appl. Phys. 78(1), 212-216 (1995).
    [256] C. -M. Chung, Y. -S. Roh, S. -Y. Cho, and J. -G. Kim: Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem. Mater. 16(21), 3982-3984 (2004).
    [257] J. Gonzalez-Benito and J. L. Koenig: FTIR imaging of the dissolution of polymers. 4. poly(methyl methacrylate) using a cosolvent mixture (carbon tetrachloride/methanol). Macromolecules 35(19), 7361-7367 (2002).
    [258] "有機化合物結構鑒定與有機波譜學",寧永成,歐亞書局,初版 (1992)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE