研究生: |
許維麟 Hsu, Wei-Lin |
---|---|
論文名稱: |
利用非天然胺基酸來調控小螺旋蛋白HP36 的作用力及穩定度 Modulating the Interactions in a Small Helical Protein HP36 by Nonnatural Amino Acids |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
江昀緯
Chiang, Yun-Wei 李政怡 Lee, Cheng-I |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 胜肽 、雞絨毛蛋白 、非天然胺基酸 、穩定度 |
外文關鍵詞: | HP36, Non-natural amino acid, stability, peptide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有36個胺基酸的雞絨毛蛋白(HP36)為一個小的螺旋蛋白,由三個α-螺旋結構所組成,而其三個α-螺旋則會形成一疏水核心(hydrophobic core)以穩定整體結構。該疏水核心由三個苯丙胺酸(phenylalanine) Phe47,Phe51,Phe58和一個纈胺酸(valine)Val50所組成。由於HP36的特殊結構及其快速的折疊(folding)速度,使得它成為一個研究蛋白質折疊的優良模型。在以往的研究當中顯示,將氟化後的苯丙胺酸置換於疏水核心後可以提升其疏水性進而增加蛋白質的穩定性。氟原子自身也可以改變芳香環上的電子密度分布,進而誘發、增強或削弱各種靜電作用力。然而,過多的置換亦可能造成額外的立體障礙效應進而降低蛋白質結構的穩定性。
在本實驗當中,我們分別使用了在四號位置用氟原子取代的苯丙胺酸(4-fluorophenylalanine)及甲基取代的苯丙胺酸(4-methylphenylalanine)來置換Phe47, Phe51及Phe58;所合成的變異蛋白質有:F51Z、F51Z/F58Z、F47Z/F51Z/F58Z、F58X、F51Z/F58X、和 F51X/F58Z。其中Z代表4-氟苯丙胺酸,而X代表4-甲基苯丙胺酸。我們先利用far-UV CD光譜與NMR光譜來鑑定其結構,並確定所有衍生物皆與原生態(WT)具有相似之構形。接著再以變溫實驗與化學誘導變性實驗來探究其穩定性,並得出其穩定性之排序: F51Z > F51X/F58Z ~ F51Z/F58Z ~ F51Z/F58X > WT > F47Z/F51Z/F58Z ~ F58X。為了更加了解其穩定性之趨勢,我們利用了Discovery Studio這套軟體來進行簡易的模擬運算,所使用的力場為CHARMm,並得出各胜肽的能量最適化後的結構。由各個結構當中可清楚看到疏水核心中的苯丙胺酸的相對位置,而由該相對位置我們計算了之間的作用力,並得出各種作用力如polar...π和凡得瓦作用力對其穩定性有一定的影響力。此外,我們也認為在不同位置的置換可能會誘發不適當的立體障礙效應,因而降低蛋白質的穩定性。
由我們的研究當中可以發現該核心的作用力遠比我們所想像的還要複雜,彼此互相牽涉了許多作用力,沒有單一的作用力能夠決定最後的穩定性。雖然就現階段而言我們仍無法全數闡明它們之間的詳細交互關係,不過我們在此研究當中提出了一種更加細節的觀點來探討HP36的折疊作用力,希望這樣的結果能對未來的蛋白質設計能有更多的了解與幫助。
HP36, the helical subdomain of villin headpiece, known as one of the smallest naturally occurring cooperatively folded proteins. Due to its small size, three-helical topology and rapid folding rate, HP36 is a good model for computational and theoretical studies of protein folding. This subdomain contains a hydrophobic core composed of three phenylalanine residues (Phe47, Phe51, Phe58), and one valine residue (Val50). Polar…π interactions and hydrophobic interactions have been shown to be critical factors to stabilize HP36, and also been proposed to be general forces in stabilizing small proteins. By mutating Phe47, Phe51 and Phe58 with fluorinated or methylated phenylalanine, we can modulate the aromatic-aromatic interactions between these phenylalanine residues and the folding stability of HP36.
To investigate the consequences of incorporated fluorinated or methylated phenylalanine into the hydrophobic core of HP36, here we synthesized wild type HP36 (WT) and its six variants F51Z, F51Z/F58Z, F47Z/F51Z/F58Z, F58X, F51Z/F58X, and F51X/F58Z, where the Z represents 4-fluorophenylalanine, and the X represents 4-methyl- phenylalanine. Far-UV CD and NMR spectra indicate that all of the mutants fold into a similar conformation to that of WT. The stability has also been measured by thermal and chemical denaturation experiments for each variant. The stability order was found as: F51Z > F51X/F58Z ~ F51Z/F58Z ~ F51Z/F58X > WT > F47Z/F51Z/F58Z ~ F58X. In order to elucidate this interesting tendency, we further performed simple simulations by the Discovery Studio software. By applying CHARMm force field and adopted basis Newton-Raphson method to get their energy optimized final structures, we were able to examine the orientation between these three Phe residues, and to calculate the interaction energies.
Both the outcomes of the simulations and the final structures are quite fascinating: the orientations of the three Phe residues show edge-face or semi-face-face geometries to each other, which might induce different electrostatic interactions including polar…π interaction and/or other π...π stacking interactions. The introduced fluorine atom and methyl group not only increased the hydrophobicity but also induced the rearrangement of electron density of the phenyl rings, which would enhance or decrease the electrostatic interactions. Besides, we also believe that steric effects play another important factor to modulate the stabilities.
Our study showed us that the interactions among the hydrophobic core are much more complicated than we imagined, and no single factor would overwhelm others. Although we are not able to clarify all of them at the present stage, we did provide a more detailed point of view to appreciate the interactions among the HP36 hydrophobic core. Our results should be useful and helpful for the future protein design study.
1. George, S. P., Wang, Y., Mathew, S., Srinivasan, K. & Khurana, S. Dimerization and actin-bundling properties of villin and its role in the assembly of epithelial cell brush borders. J. Biol. Chem. 282, 26528–41 (2007).
2. Friederich, E. et al. Villin Function in the Organization of the Actin Cytoskeleton. J. Biol. Chem. 274, 26751–26760 (1999).
3. Bazari, W. L. et al. Villin sequence and peptide map identify six homologous domains. Proc. Natl. Acad. Sci. 85, 4986–90 (1988).
4. Mcknight, C. J., Doering, D. S., Matsudaira, P. T. & Kim, P. S. A Thermostable 35-Residue Subdomain within Villin Headpiece. J. Mol. Biol. 260, 126–134 (1996).
5. Xiao, S., Bi, Y., Shan, B. & Raleigh, D. Analysis of core packing in a cooperatively folded miniature protein: the ultrafast folding villin headpiece helical subdomain. Biochemistry 48, 4607–4616 (2009).
6. Brandl, M., Weiss, M. S., Jabs, A., Sühnel, J. & Hilgenfeld, R. C-H...pi-interactions in proteins. J. Mol. Biol. 307, 357–77 (2001).
7. Salwiczek, M., Nyakatura, E. K., Gerling, U. I. M., Ye, S. & Koksch, B. Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions. Chem. Soc. Rev. 41, 2135–71 (2012).
8. Baker, E. N. & Hubbard, R. E. Hydrogen bonding in globular proteins. Prog. Biophys. Molec. Biol. 44, 97–179 (1984).
9. Kang, Y. K. & Byun, B. J. Strength of CH•••π interactions in the C-terminal subdomain of villin headpiece. Biopolymers 97, 778–88 (2012).
10. Tong-Yuan Zheng, Yu-Ju Lin, J.-C. H. Thermodynamic Consequences of Incorporating 4-Substituted Proline Derivatives into a Small Helical Protein. Biochemistry 49, 4255–4263 (2010).
11. Pace, C. J. & Gao, J. Exploring and Exploiting Polar-π Interactions with Fluorinated Aromatic Amino Acids. Acc. Chem. Res. 46, 907–15 (2013).
12. Woll, M. G., Hadley, E. B., Mecozzi, S. & Gellman, S. H. Stabilizing and destabilizing effects of phenylalanine --> F5-phenylalanine mutations on the folding of a small protein. J. Am. Chem. Soc. 128, 15932–3 (2006).
13. Zheng, H., Comeforo, K. & Gao, J. Expanding the fluorous arsenal: tetrafluorinated phenylalanines for protein design. J. Am. Chem. Soc. 131, 18–9 (2009).
14. Baldwin, R. Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. 83, 8069–72 (1986).
15. Wood, R. & Thompson, P. Differences between pair and bulk hydrophobic interactions. Proc. Natl. Acad. Sci. 87, 946–949 (1990).
16. Manavalan, P. & Ponnuswamy, P. Hydrophobic character of amino acid residues in globular proteins. Nature 275, 673–674 (1978).
17. Nozaki, Y. & Tanford, C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions establishment of a hydrophobicity scale. J. Biol. Chem. 246, 2211–17 (1971).
18. Jones, D. D. Amino acid properties and side-chain orientation in proteins: A cross correlation approach. J. Theor. Biol. 50, 167–183 (1975).
19. Senguen, F. T. et al. Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-β fragment peptide. Mol. Biosyst. 7, 486–96 (2011).
20. Weinhold, F. A new twist on molecular shape. Nature 411, 539–41 (2001).
21. Anil, B., Sato, S., Cho, J.-H. & Raleigh, D. P. Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing. J. Mol. Biol. 354, 693–705 (2005).
22. Chang, S. Study on the Formation of Intramolecular Disulfide Bond in Octreotide. Department of Chemistry, CYCU (2003).
23. Chan, W. C. & White, P. D. Fmoc Solid Phase Peptide Synthesis: A Practical Approach. (Oxford University press: 1999).
24. Circular Dichroism (CD) Spectroscopy. Applied Photophysics Ltd . (2013).at <http://www.photophysics.com/tutorials/circular-dichroism-cd-spectroscopy/7-cd-units-conversions>
25. Greenfield, N. J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–35 (2006).
26. Reviews in Computational Chemistry. (John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996).
27. Gotwals, B. Overview of Computational Chemistry. The Shodor Education Foundation Inc. (1999).at <http://www.shodor.org/chemviz/overview/ccbasics.html>
28. Accelrys Software Inc. Simulation in Discovery Studio. accelrys.com (2012).at <http://accelrys.com/products/datasheets/simulation.pdf>
29. Wang, W., Vinocur, B. & Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14 (2003).
30. Seki, M., Kamei, A., Yamaguchi-Shinozaki, K. & Shinozaki, K. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr. Opin. Biotechnol. 14, 194–199 (2003).
31. Furuki, T., Shimizu, T., Kikawada, T., Okuda, T. & Sakurai, M. Salt Effects on the structural and thermodynamic properties of a group 3 LEA protein model peptide. Biochemistry 50, 7093–103 (2011).
32. Meier, J. J. et al. Inhibition of human IAPP fibril formation does not prevent beta-cell death: evidence for distinct actions of oligomers and fibrils of human IAPP. Am. J. Physiol. Endocrinol. Metab. 291, E1317–24 (2006).
33. Conway, K. A. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha -synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. 97, 571–576 (2000).
34. Bernstein, S. L. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 1, 326–31 (2009).
35. Meng, J. et al. High-resolution crystal structures of villin headpiece and mutants with reduced F-actin binding activity. Biochemistry 44, 11963–73 (2005).
36. Sheng, Y., Wang, W. & Chen, P. Adsorption of an Ionic Complementary Peptide on the Hydrophobic Graphite Surface. J. Phys. Chem. C 114, 454–459 (2010).
37. Wüthrich, K. NMR of amino acid residues and mononucleotides, in NMR of Proteins and Nucleic Acids. 13–25 (Wiley: New York, 1986).
38. Butterfield, S. M., Patel, P. R. & Waters, M. L. Contribution of Aromatic Interactions to α-Helix Stability. J. Am. Chem. Soc. 124, 9751–9755 (2002).