簡易檢索 / 詳目顯示

研究生: 陳又熒
Chen, You-Ying
論文名稱: 以模擬最佳化求解在連續監測系統下之最佳維修保養及備品存貨管理策略
Optimal Condition-Based Maintenance and Inventory Policy in a Continuously Monitoring System Using Simulation Optimization
指導教授: 張國浩
Chang, Kuo-Hao
口試委員: 洪一峯
Hung, Yi-Feng
吳建瑋
Wu, Chien-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 63
中文關鍵詞: 狀態基準維護模擬最佳化存貨管理政策不完美維修
外文關鍵詞: Condition-based maintenance, Simulation optimization, Inventory policy, Imperfect maintenance
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文考慮於連續監測系統下的維修保養及備品存貨管理之問題,此問題中考慮不同工作站、機台和備品的系統下,同時最佳化狀態基準維護(condition-based maintenance)以及零件備品的存貨管理政策。零件的退化程度模型可以珈瑪過程(gamma process)描述。透過零件上的感應器,我們能夠連續監測零件的退化程度,一旦任一零件退化程度超過預定的閥值時,不完美維修或更換的維修保養動作將被執行。為了找出最佳的備品存貨管理政策及零件退化程度閥值,我們發展一個以模擬為基礎的最佳化方法(KMTR),此方法以Stochastic Trust-Region Response Surface Method (STRONG) 為基礎,結合克利金近似模型(kriging metamodel)以及Nelder-Mead simplex method進行求解。透過數值研究可以證實本篇提出的模型和方法能達到維修保養成本最小化。


    This paper considers condition-based maintenance and spare parts inventory policy simultaneously for a system consisting of different machines and components. The degradation of the components are modeled by Gamma process. By the sensors on the components, we continuously monitor the degradation level of the components, and once the degradation level exceeds the predefined degradation thresholds, imperfect repair maintenance or replacement maintenance are performed. A simulation-based optimization approach is proposed to find the optimal components inventory policy and degradation level thresholds of components. The proposed approach is based on Stochastic Trust-Region Response Surface Method (STRONG), coupled with the Kriging metamodel and the Nelder-Mead simplex method. A numerical study shows that the proposed model and the method can achieve minimized maintenance cost as expected.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3論文架構 3 第二章 文獻回顧 5 2.1維修保養問題 5 2.2維修保養的模擬最佳化 10 第三章 數學模型 15 3.1符號定義 15 3.2 問題定義 17 3.2.1零件的退化程度 17 3.2.2維修保養政策 18 3.2.3維修保養程度 19 3.2.4維修保養及備品存貨之假設 20 3.3維修保養數學模型 20 第四章 求解方法 23 4.1方法流程及架構 23 4.2定義信賴區域 24 4.3拉丁超立方抽樣(Latin Hypercube Sampling) 25 4.4建立克利金模型 26 4.5找尋最佳解 27 4.6 Ratio-Comparison(RC)及Sufficient-Reduction(SR)測試 31 4.7更新信賴區域 32 第五章 數值實驗 33 5.1測試問題 33 5.1.1測試函數 33 5.1.2參數設定 35 5.1.3數值結果 36 5.2個案研究 39 5.2.1簡單維修保養問題 40 5.2.2複雜維修保養問題 47 第六章 結論與未來研究 58 參考文獻 59

    Acharya, D., Nagabhushanam, G., & Alam, S. S. (1986). Jointly optimal block-
    replacement and spare provisioning policy. IEEE Transactions on Reliability, 35(4), 447-451.
    Alrabghi, A., Tiwari, A., & Alabdulkarim, A. (2013, December). Simulation based
    optimization of joint maintenance and inventory for multi-components manufacturing systems. In 2013 Winter Simulations Conference (WSC), 1109-1119.
    Arunraj, N. S., & Maiti, J. (2010). Risk-based maintenance policy selection using AHP
    and goal programming. Safety Science, 48(2), 238-247.
    Besnard, F., & Bertling, L. (2010). An approach for condition-based maintenance
    optimization applied to wind turbine blades. IEEE Transactions on Sustainable Energy, 1(2), 77-83.
    Brezavscek, A., & Hudoklin, A. (2003). Joint optimization of block-replacement and
    periodic-review spare-provisioning policy. IEEE Transactions on Reliability,
    52(1), 112-117.
    BSI (1984). Glossary of Maintenance Terms in Terotechnology. British Standard
    Institution (BSI), London; BS 3811.
    Chang, K. H. (2012). Stochastic Nelder–Mead simplex method-a new globally
    convergent direct search method for simulation optimization. European Journal of Operational Research, 220(3), 684-694.
    Chang, K. H., Hong, L. J., & Wan, H. (2013). Stochastic trust-region response-surface
    method (strong)-a new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2), 230-243.
    Chen, M. C., Hsu, C. M., & Chen, S. W. (2006). Optimizing joint maintenance and
    stock provisioning policy for a multi-echelon spare part logistics network. Journal of the Chinese Institute of Industrial Engineers, 23(4), 289-302.
    Conn, A. R., Gould, N. I., & Toint, P. L. (2000). Trust Region Methods (Vol. 1). Siam.
    Dieulle, L., Bérenguer, C., Grall, A., & Roussignol, M. (2003). Sequential condition-
    based maintenance scheduling for a deteriorating system. European Journal of Operational Research, 150(2), 451-461.
    Gaspar, B., Teixeira, A. P., & Soares, C. G. (2014). Assessment of the efficiency of
    Kriging surrogate models for structural reliability analysis. Probabilistic Engineering Mechanics, 37, 24-34.
    Huang, Z., Wang, C., Chen, J., & Tian, H. (2011). Optimal design of aeroengine turbine
    disc based on kriging surrogate models. Computers & Structures, 89(1), 27-37.
    Ilgin, M. A., & Tunali, S. (2007). Joint optimization of spare parts inventory and
    maintenance policies using genetic algorithms. The International Journal of Advanced Manufacturing Technology, 34(5-6), 594-604.
    Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and
    prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483-1510.
    Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling
    techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1-13.
    Labib, A. W. (2004). A decision analysis model for maintenance policy selection using
    a CMMS. Journal of Quality in Maintenance Engineering, 10(3), 191-202.
    Lapa, C. M. F., Pereira, C. M. N., & de Barros, M. P. (2006). A model for preventive
    maintenance planning by genetic algorithms based in cost and reliability. Reliability Engineering & System Safety, 91(2), 233-240.
    Leng, K., Ren, P., & Gao, L. (2006, June). A novel approach to integrated preventive
    maintenance planning and production scheduling for a single machine using the chaotic particle swarm optimization algorithm. In 2006 6th World Congress on Intelligent Control and Automation, 2, 7816-7820.
    Liao, H., Elsayed, E. A., & Chan, L. Y. (2006). Maintenance of continuously monitored
    degrading systems. European Journal of Operational Research, 175(2), 821-835.
    Li, C., Xu, M., Guo, S., & Wang, R. (2010). Multiobjective maintenance optimization
    of the continuously monitored deterioration system. Journal of Systems Engineering and Electronics, 21(5), 791-797.
    Li, H., Deloux, E., & Dieulle, L. (2016). A condition-based maintenance policy for
    multi-component systems with Lévy copulas dependence. Reliability Engineering & System Safety, 149, 44-55.
    Li, Y. G., & Nilkitsaranont, P. (2009). Gas turbine performance prognostic for
    condition-based maintenance. Applied Energy, 86(10), 2152-2161.
    Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained
    optimization software. ACM Transactions on Mathematical Software (TOMS),
    7(1), 17-41.
    Nguyen, K. A., Do, P., & Grall, A. (2015). Multi-level predictive maintenance for multi-
    component systems. Reliability Engineering & System Safety, 144, 83-94.
    Pham, H., & Wang, H. (1996). Imperfect maintenance. European Journal of
    Operational Research, 94(3), 425-438.
    Rafiee, K., Feng, Q., & Coit, D. W. (2015). Condition-based maintenance for repairable
    deteriorating systems subject to a generalized mixed shock model. IEEE Transactions on Reliability, 64(4), 1164-1174.
    Rao, B. K. N. (1996). Handbook of Condition Monitoring. Elsevier.

    Rezg, N., Xie, X., & Mati, Y. (2004). Joint optimization of preventive maintenance and
    inventory control in a production line using simulation. International Journal of Production Research, 42(10), 2029-2046.
    Sarker, R., & Haque, A. (2000). Optimization of maintenance and spare provisioning
    policy using simulation. Applied Mathematical Modelling, 24(10), 751-760.
    Shang, Y. W., & Qiu, Y. H. (2006). A note on the extended Rosenbrock function.
    Evolutionary Computation, 14(1), 119-126.
    Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging models for
    global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 39(12), 2233-2241.
    Tandon, N., Yadava, G. S., & Ramakrishna, K. M. (2007). A comparison of some
    condition monitoring techniques for the detection of defect in induction motor ball bearings. Mechanical Systems and Signal Processing, 21(1), 244-256.
    Trutt, F. C., Sottile, J., & Kohler, J. L. (2002). Online condition monitoring of induction
    motors. IEEE Transactions on Industry Applications, 38(6), 1627-1632.
    Van Horenbeek, A., & Pintelon, L. (2013). A dynamic predictive maintenance policy
    for complex multi-component systems. Reliability Engineering & System Safety, 120, 39-50.
    Van Noortwijk, J. M. (2009). A survey of the application of gamma processes in
    maintenance. Reliability Engineering & System Safety, 94(1), 2-21.
    Wang, H. K., Huang, H. Z., Li, Y. F., & Yang, Y. J. (2016). Condition-based
    maintenance with scheduling threshold and maintenance threshold. IEEE Transactions on Reliability, 65(2), 513-524.
    Wang, L., Chu, J., & Mao, W. (2009). A condition-based replacement and spare
    provisioning policy for deteriorating systems with uncertain deterioration to failure. European Journal of Operational Research, 194(1), 184-205.
    Wang, W., & Zhang, W. (2005). A model to predict the residual life of aircraft engines
    based upon oil analysis data. Naval Research Logistics (NRL), 52(3), 276-284.
    Wang, Y., & Pham, H. (2011). A multi-objective optimization of imperfect preventive
    maintenance policy for dependent competing risk systems with hidden failure. IEEE Transactions on Reliability, 60(4), 770-781.
    Wright, S., & Nocedal, J. (1999). Numerical Optimization. Springer Science, 35, 67-68.
    Yang, H., Mathew, J., & Ma, L. (2005). Fault diagnosis of rolling element bearings
    using basis pursuit. Mechanical Systems and Signal Processing, 19(2), 341-356.
    Yuan, Y. X. (1999). A review of trust region algorithms for optimization. In Proceedings
    of the Fourth International Congress on Industrial and Applied Mathematics, 271-282.

    QR CODE