簡易檢索 / 詳目顯示

研究生: 盧臆中
I-Chung Lu
論文名稱: 以交叉分子束方法研究雙重態氮原子及三重態碳原子與矽甲烷之反應動力學
Crossed molecular beam studies of N (2D/2P) and C (3P) reactions with silane
指導教授: 陳益佳
I-Chia Chen
楊學明
Xueming Yang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 88
中文關鍵詞: 矽甲烷交叉分子束
外文關鍵詞: silane, crossed molecular beam
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用交叉分子束的技術研究雙重態氮原子N(2D/2P)以及三重態碳原子C(3P)與矽甲烷作用之反應動態學。為了詳細研究上述反應,我們開發了新的放電裝置以產生較小脈寬的原子束,同時利用可調能量的真空紫外光游離產物,結合質譜作為實驗的偵測系統。透過轉換反應產物的飛行時間譜(Time-of-Flight),可以得到質心座標下的產物動能分佈以及產物角分佈,並藉此分析反應動態過程。
    於雙重態氮原子與矽甲烷的反應實驗中,主要有H + H + SiNH2/HSiNH 和 H2 + H + SiNH/HSiN兩個反應途徑。然而,反應中並沒有發現有單一氫原子或是單一氫分子生成的反應通道。主要原因是反應中伴隨其生成的氮矽化合物仍具有足夠的內能進行第二次的解離反應形成三體解離。此外,實驗結果也發現激發的雙重態氮原子與矽甲烷的反應性比基態氮原子的反應性大很多。在三重態碳原子與矽甲烷的反應中,主要的反應路經為H + SiCH3(2A”)/HSiCH2(2A) 以及 H2 + SiCH2(3A2)/HSiCH(3A”)。由產物種類可歸納出碳原子於反應時插入矽氫鍵後,發生於三重態位能面氫原子由矽原子(Si)上轉移到碳原子(C)的現象。實驗結果亦觀察到在4.0 kcal/mol的碰撞能下,單重基發態碳原子與矽甲烷的反應是可以被忽略的。
    利用同步幅射光結合的交叉分子束儀器研究上述兩個反應,可得到許多與理論計算相互印證的實驗結果,並且也為單原子與多原子分子的基元反應提供了一個優異的研究方法。


    Two interrelated works have been carried out and are presented in this thesis. We newly developed a pulsed atom source by discharge method to study the reactions of N(2P/2D) + SiH4 and C(3P) + SiH4 using a crossed-beam technique combined with tunable VUV photoionization. We measured the time-of-flight spectra of products to derive their angular and kinetic-energy distributions.
    Two reaction channels, H + H + SiNH2/HSiNH and H2 + H + SiNH/HSiN, were identified in the reaction of atomic N(2P/2D) with silane. No signal associated with the single-H or single-H2 elimination was observed because nascent nitrosilanes produced from the foregoing reactions probably have enough internal energy for secondary decomposition. We suggest that N(2D) and N(2P) atoms are more reactive than N(4S) in the reaction with silane. In addition, two reaction channels, H + SiCH3(2A”)/HSiCH2(2A) and H2 + SiCH2(3A2) /HSiCH(3A”), are identified in the C(3P) + SiH4 reaction. The formation of these two types of carbosilanes indicates that hydrogen transfers from the Si atom to the C atom occurre after atomic C(3P) inserted into the Si-H bond on the triplet potential-energy surface. The experimental results also suggested that atomic C(1D) is nonreactive with silane at collision energy 4.0 kcal/mol, consistent with the theoretical calculations.
    The agreement between experimental and theoretical results is quite satisfactory in this study, which provided an excellent experimental case for the reactions of atoms with polyatomic molecule in studying reaction dynamics of fundamental chemistry.

    摘要 謝誌 Abstract Contents Figure Captions Chapter 1 Introduction: An overture 1 1.1 The union of molecular dynamics and crossed molecular-beam (CMB) technique 1 1.2 Advance of the CMB apparatus at NSRRC 3 1.3 Research subjects in this thesis 5 References 8 Chapter 2 Experimental details and applications 10 2.1 Crossed molecular beam apparatus 10 2.1.1 Vacuum chamber 10 2.1.2 Molecular beam 13 2.1.3 Atom beam source 15 2.1.4 Universal photoionization detector 21 2.2 Useful accessories 22 2.2.1 The Chemical Dynamics Beamline in NSRRC 22 2.2.2 Time-of-flight (TOF) spectrum 23 2.3 The scheme of analysis 25 References 28 Chapter 3 Dynamics of the N + SiH4 reaction in a crossed molecular-beam condition 29 3.1 Introduction 30 3.2 Experiment 32 3.3 Results and discussions 33 3.3.1 The H + H + SiNH2 channel 33 3.3.2 The H2 + H + SiNH channel 40 3.3.3 Isotopic effect 45 3.4 Conclusions 50 References 51 Chapter 4 Dynamics of the C(3P) + SiH4 reaction in a crossed molecular-beam condition 54 4.1 Introduction 55 4.2 Experiment 57 4.3 Results and discussions 57 4.3.1 The potential energy surface of C + SiH4 57 4.3.2 The H + SiCH3/HSiCH2 channel 63 4.3.3 The H2 + SiCH2 channel 72 4.3.4 Relative branching ratios 81 4.4 Conclusions 84 References 85 Appendices 88

    1. M. D. Allendorf and R. J. Kee, Journal of The Electrochemical Society 138, 841 (1990).
    2. M. E. Coltrin and R. J. Kee, Journal of The Electrochemical Society. 136, 819 (1989).
    3. Xixiang Xu, Hiroyuki Sasaki, Akiharu Morimoto, Minoru Kumeda, and Tatsuo Shimizu, Phys. Rev. B. 41, 10049 (1990).
    4. Shogo Sakai, John Deisz, and Mark S. Gordon, J. Phys. Chem. 93, 1888 (1989).
    5. A. E. Ketvirtis, D. K. Bohme, and A. C. Hopkinson, J. Phys. Chem. 99, 16121 (1995).
    6. John D. Goddard, Yasunori Yoshioka, and Henry F. Schaefer, J. Am. Chem. Soc. 102, 7644 (1980).
    7. Roger S. Grev, Gustavo E. Scuseria, Andrew C. Scheiner, Henry F. Schaefer, and Mark S. Gordon, J. Am. Chem. Soc. 110, 7337 (1988).
    8. Seung Koo Shin, Karl K. Irikura, J. L. Beauchamp, and William A. Goddard, J. Am. Chem. Soc. 110, 24 (1988).
    9. B. T. Luke, J. A. Pople, M. B. Krogh-Jespersen, Y. Apeloig, M. Karni, J. Chandrasekhar, and Paul V R. Schleyer, J. Am. Chem. Soc. 108, 270 (1986).
    10. Mark D. Allendorf and Carl F. Melius, J. Phys. Chem. 96, 428 (1992).
    11. Jerry A. Boatz and Mark S. Gordon, J. Phys. Chem. 94, 7331 (1990).
    12. Hans Joachim Koehler and Hans Lischka, J. Am. Chem. Soc. 104, 5884 (1982).
    13. J. Olah, F. Deproft, T. Veszpremi, and P. Geerlings, J. Phys. Chem. A. 108, 490 (2004).
    14. N. Balucani, G. Capozza, E. Segoloni, A. Russo, R. Bobbenkamp, P. Casavecchia, T. Gonzalez-Lezana, E. J. Rackham, L. Banares, and F. J. Aoiz, J. Chem. Phys. 122, 234309 (2005).
    15. B. Bussery-Honvault, J. Julien, P. Honvault, and J. M. Launay, Phys. Chem. Chem.l Phys. 7, 1476 (2005).
    16. B. Bussery-Honvault, P. Honvault, and J. M. Launay, The J. Chem. Phys. 115, 10701 (2001).
    17. P. Honvault, B. Bussery-Honvault, J. M. Launay, F. J. Aoiz, and L. Banares, J. Chem. Phys. 124, 154314 (2006).
    18. E. Tschuikow-Roux, Y. Inel, S. Kodama, and A. W. Kirk, J. Chem. Phys. 56, 3238 (1972).
    19. R. I. Kaiser and A. G. Suits, Review of Scientific Instruments. 66, 5405 (1995).
    20. Ralf I. Kaiser and Alexander M. Mebel, Inter. Rev. Phys. Chem. 21, 307 (2002).
    21. R. I. Kaiser, W. Sun, A. G. Suits, and Y. T. Lee, J. Chem. Phys. 107, 8713 (1997).
    22. R. I. Kaiser, Yuan T. Lee, and Arthur G. Suits, J. Chem. Phys. 103, 10395 (1995).
    23. R. I. Kaiser, C. Ochsenfeld, M. Head-Gordon, Y. T. Lee, and A. G. Suits, J. Chem. Phys. 106, 1729 (1997).
    24. R. I. Kaiser, Y. T. Lee, and A. G. Suits, J. Chem. Phys. 105, 8705 (1996).
    25. R. I. Kaiser, A. M. Mebel, A. H. H. Chang, S. H. Lin, and Y. T. Lee, J. Chem. Phys. 110, 10330 (1999).
    26. R. I. Kaiser, D. Stranges, Y. T. Lee, and A. G. Suits, J. Chem. Phys. 105, 8721 (1996).
    27. R. I. Kaiser, D. Stranges, H. M. Bevsek, Y. T. Lee, and A. G. Suits, J. Chem. Phys. 106, 4945 (1997).
    28. L. C. L. Huang, H. Y. Lee, A. M. Mebel, S. H. Lin, Y. T. Lee, and R. I. Kaiser, J. Chem. Phys. 113, 9637 (2000).
    29. I. Hahndorf, H. Y. Lee, A. M. Mebel, S. H. Lin, Y. T. Lee, and R. I. Kaiser, J. Chem. Phys. 113, 9622 (2000).
    30. Holger F. Bettinger, Paul V R. Schleyer, Henry F. Schaefer Iii, Peter R. Schreiner, Ralf I. Kaiser, and Yuan T. Lee, J. Chem. Phys. 113, 4250 (2000).
    31. R. I. Kaiser, I. Hahndorf, L. C. L. Huang, Y. T. Lee, H. F. Bettinger, P. V R. Schleyer, H. F. Schaefer Iii, and P. R. Schreiner, J. Chem. Phys. 110, 6091 (1999).
    32. Wolf D. Geppert, Christian Naulin, Michel Costes, Giovanni Capozza, Laura Cartechini, Piergiorgio Casavecchia, and Gian Gualberto Volpi, J. Chem. Phys. 119, 10607 (2003).
    33. M. R. Scholefield, J. H. Choipermanent, S. Goyalpermanent, and H. Reisler, Chem. Phys. Lett. 288, 487 (1998).
    34. G. S. Kim, T. L. Nguyen, A. M. Mebel, S. H. Lin, and M. T. Nguyen, J. Phys. Chem. A. 107, 1788 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE