研究生: |
林昱宏 Lin, Yu-Hung |
---|---|
論文名稱: |
濕式製作長壽命類燭光有機發光二極體 Long-lifetime Solution Processed Candlelight OLED |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
王欽戊
溫世文 呂芳賢 岑尚仁 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 濕式製作 、長壽命 、燭光 、有機發光二極體 |
外文關鍵詞: | Solution Processed, Long-lifetime, Candlelight, OLED |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
市面上所販售的照明光源普遍含有過多藍光,已有眾多研究證實,入夜曝照藍光除了對眼睛及身體造成不可逆的傷害外,亦會造成生態的破壞及夜空的汙染,因此,一個無藍害的照明光源是市場上所歡迎的;燭光有機發光二極體(OLED),其所放出的光色有如蠟燭一般,又不會有使用蠟燭所帶來的缺點,為目前入夜使用人工照明的首選,可有效避免入夜後曝照藍光所帶來的傷害;然而作為照明使用,長壽命是很重要的一件事,而這正是OLED必需解決的一個重要議題,尤其是對以濕式製程製作之OLED,提升元件的壽命更是刻不容緩;因此,本研究以濕式製程製作一長壽命類燭光OLED,所製成之濕式OLED元件,為夜晚照明提供一低成本、高壽命的新選擇。
本研究使用4,4',4"-Tris(carbazol-9-yl)triphenylamine (TCTA)作為主體材料,並摻雜10 wt%橘紅光客體Tris(2-phenylquinoline)iridium(III) (Ir(2-phq)3)與10 wt%綠光共主體Tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3),以濕式製程研製出一長壽命燭光OLED,其能量效率(PE)可達30.5 lm/W,外部量子效率(EQE)達13.2 %,色溫為1,771 K,壽命(t50)在初始亮度1,000 cd/m2下可達87小時;元件的長壽命可歸因於:(1) 主體材料TCTA相能有效地將能量轉移給共主體與客體;(2) 主體材料TCTA有高的玻璃轉換溫度(Glass transition temperature, Tg),在熱蒸鍍過程中,可以形成表面平整的薄膜,且對元件長時間運作所產生的熱能有較高的耐受性,進而延長元件壽命;(3) 添加的綠光客體Ir(ppy)3可作為共主體的存在,將能量有效的轉移給Ir(2-phq)3橘紅光客體,達到更有效的能量利用與更少的能量損失,因而提升壽命。(4) 透過濃度的最佳化避免了濃度淬熄的發生,進而提升了元件的壽命。
Most emission of the commercial lighting sources contain too much blue light. Many research have found that exposure blue light at night may not only cause irreversible damages to human eyes and body but also lead to ecological damage and pollution of the night sky. Hence, a blue-hazard lighting source is welcomed in the market. Candlelight organic light-emitting diodes (OLED), which emits similar light color to that of a candle, without the disadvantages of candles, are currently the first choice for artificial lighting at night to effectively avoid the damage caused by exposure to blue light at night. However, for lighting purposes, long lifetime is a very important issue for OLED devices to solve. Especially for solution processed OLED, it is imperative to improve the lifetime of the device. Therefore, we carried out a solution processed long lifetime candlelight OLED. The produced solution processed OLED device provides a new chose of a low-cost, long-lifetime lighting source for in night lighting.
In this study, 4,4',4"-Tris(carbazol-9-yl)triphenylamine (TCTA) was used as the host material, doped with 10 wt% of Tris(2-phenylquinoline)iridium(III) (Ir(2-phq)3) as an orange-red dopant and 10 wt% of Tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) as green light co-hosted to developed a long lifetime solution processed candlelight OLED. Which shows an power efficacy (PE) of 30.5 lm/W, an external quantum efficiency (EQE) of 13.2%, and the color temperature of the device is 1,771 K with a lifetime (t50) of 67.8 hours under the initial brightness of 1,000 cd/m2. The long lifetime of the component can be attributed to: (1) Host material TCTA can effectively transfer energy to the co-host and guest. (2) Host material TCTA has a high glass transition temperature (Tg) which can form a flat film during the thermal evaporation process. And this property can lead to a higher tolerance to the thermal energy generated while long-term operation of the device, thereby prolong the lifetime of the device. (3) The added of the green dopant Ir(ppy)3 can exist as a co-host, which can effectively transfers energy to the orange-red dopant Ir(2 -phq)3 to achieve a more effective energy utilization and less energy loss, thus increase the lifetime. (4) Through the optimization of the doping concentration, the occurrence of concentration quenching is avoided, hence improved the lifetime of the device.
1. Falchi, F., et al., The new world atlas of artificial night sky brightness. Science advances, 2016. 2(6): p. e1600377.
2. Brainard, G.C., et al., The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain research, 1984. 294(2): p. 333-339.
3. Pauley, S.M., Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Medical hypotheses, 2004. 63(4): p. 588-596.
4. Kloog, I., et al., Light at night co‐distributes with incident breast but not lung cancer in the female population of Israel. Chronobiology international, 2008. 25(1): p. 65-81.
5. Kozaki, T., et al., Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion. Neuroscience letters, 2008. 439(3): p. 256-259.
6. Bernanose, A., M. Comte, and P. Vouaux, A new method of emission of light by certain organic compounds. J. Chim. Phys, 1953. 50: p. 64-68.
7. Pope, M., H. Kallmann, and P. Magnante, Electroluminescence in organic crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
8. Helfrich, W. and W.G. Schneider, Recombination Radiation in Anthracene Crystals. Physical Review Letters, 1965. 14(7): p. 229-231.
9. Helfrich, W. and W.J.T.J.o.C.P. Schneider, Transients of volume‐controlled current and of recombination radiation in anthracene. 1966. 44(8): p. 2902-2909.
10. Vincett, P., et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. 1982. 94(2): p. 171-183.
11. Partridge, R., Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations. Polymer, 1983. 24(6): p. 733-738.
12. Tang, C.W. and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
13. Tang, C.W., C.H. Chen, and R. Goswami, Electroluminescent device with modified thin film luminescent zone. 1988, Google Patents.
14. Adachi, C., et al., Organic electroluminescent device with a three-layer structure. 1988. 27(4A): p. L713.
15. Tang, C.W., S.A. VanSlyke, and C.H.J.J.o.a.p. Chen, Electroluminescence of doped organic thin films. 1989. 65(9): p. 3610-3616.
16. Burroughes, J.H., et al., Light-emitting diodes based on conjugated polymers. 1990. 347(6293): p. 539-541.
17. Era, M., et al., Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical Physics Letters, 1991. 178(5-6): p. 488-490.
18. Kido, J., et al., White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64(7): p. 815-817.
19. Kido, J., M. Kimura, and K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science, 1995. 267(5202): p. 1332-1334.
20. Hung, L., C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154.
21. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. 1998. 395(6698): p. 151-154.
22. Blochwitz, J., et al., Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73(6): p. 729-731.
23. Adachi, C., et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001. 90(10): p. 5048-5051.
24. Huang, J., et al., Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters, 2002. 80(1): p. 139-141.
25. Matsumoto, T., et al. 27.5 L: Late‐News Paper: Multiphoton Organic EL device having Charge Generation Layer. in SID Symposium Digest of Technical Papers. 2003. Wiley Online Library.
26. Liao, L.S., K.P. Klubek, and C.W. Tang, High-efficiency tandem organic light-emitting diodes. Applied Physics Letters, 2004. 84(2): p. 167-169.
27. Liao, L.-S., et al., Cascaded organic electroluminescent devices with improved voltage stability. 2004, Google Patents.
28. Shao, Y. and Y.J.A.P.L. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method. 2005. 86(7): p. 073510.
29. Jou, J.-H., et al., Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source. 2006. 88(19): p. 193501.
30. Sun, Y. and S.R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photonics, 2008. 2(8): p. 483-487.
31. Uoyama, H., et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012. 492(7428): p. 234-8.
32. Jou, J.-H., et al., Candle Light-Style Organic Light-Emitting Diodes. Advanced Functional Materials, 2013. 23(21): p. 2750-2757.
33. Dodabalapur, A., Organic light emitting diodes. Solid State Communications, 1997. 102(2-3): p. 259-267.
34. jou, j.-h., OLED introduction.
35. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151.
36. Thompson, L.G. and S. Webber, External heavy atom effect on the phosphorescence spectra of some halonaphthalenes. The Journal of Physical Chemistry, 1972. 76(2): p. 221-224.
37. Dexter, D.L., A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 1953. 21(5): p. 836-850.
38. Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 1948. 437(1‐2): p. 55-75.
39. Klessinger, M. and J. Michl, Excited states and photochemistry of organic molecules. 1995: Wiley-VCH.
40. Liu, J., Y. Tang, and K. Wang, Response to “Comment on ‘Raman scattering from a self-organized Ge dot superlattice’”[Appl. Phys. Lett. 75, 3572 (1999)]. Applied physics letters, 1999. 75(22): p. 3574-3575.
41. Gao, Z., et al., Carrier transfer and luminescence characteristics of concentration-dependent phosphorescent Ir (ppy) 3 doped CBP film. Optics & Laser Technology, 2014. 56: p. 20-24.
42. Jou, J.-H., et al., Sunlight-style color-temperature tunable organic light-emitting diode. 2009. 95(1): p. 184.
43. Jou, J.-H., et al., High-efficiency, very-high color rendering white organic light-emitting diode with a high triplet interlayer. 2011. 21(46): p. 18523-18526.
44. Jou, J.-H., et al., Organic light-emitting diode-based plausibly physiologically-friendly low color-temperature night light. 2012. 13(8): p. 1349-1355.
45. Jou, J.-H., et al., OLEDs with chromaticity tunable between dusk-hue and candle-light. 2013. 14(1): p. 47-54.
46. Hu, Y., et al., Hybrid Organic Light‐Emitting Diodes with Low Color‐Temperature and High Efficiency for Physiologically‐Friendly Night Illumination. 2014. 54(7): p. 979-985.
47. Jou, J.-H., et al., Wet-process feasible candlelight OLED. 2016. 4(25): p. 6070-6077.
48. Yu-Hung Lin, W.-Y.Y., Yun-Jie Lin, Sun-Zen Chen, Shih-Wen Wen, Jwo-Huei Jou, Blue-hazard free candlelight-style tandem organic light-emitting diode,. Organic Electronics, 2021.
49. jou, j.-h., OLED introductuon.
50. Kearns, K.L., P. Krzyskowski, and Z. Devereaux, Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus. The Journal of chemical physics, 2017. 146(20): p. 203328.
51. Tsai, M.H., et al., 3‐(9‐Carbazolyl) carbazoles and 3, 6‐Di (9‐carbazolyl) carbazoles as effective host materials for efficient blue organic electrophosphorescence. Advanced Materials, 2007. 19(6): p. 862-866.
52. Jiang, Z., et al., Multifunctional Fluorene‐Based Oligomers with Novel Spiro‐Annulated Triarylamine: Efficient, Stable Deep‐Blue Electroluminescence, Good Hole Injection, and Transporting Materials with Very High Tg. Advanced Functional Materials, 2009. 19(24): p. 3987-3995.