簡易檢索 / 詳目顯示

研究生: 薛宇航
Yu-Hang Hsueh
論文名稱: 鈦酸鍶鋇與鋯鈦酸鉛之人工晶格薄膜特性研究
指導教授: 吳泰伯
Tai bor Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 鈦酸鍶鋇鋯鈦酸鉛人工晶格鐵電調諧
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗針對人工超晶格薄膜之微波調諧特性做研究,冀望能藉由此結構達到非揮發之特性,進而應用於鐵電微波調諧元件中。鐵電調諧元件之電容會隨著外加電壓而改變,謂之調變力(tunablity),但當外加電壓消失時,電容即會恢復為原來之值,在應用上面會有些許的限制,因此在結構上我們有了新的想法,也就是利用超晶格的結構,一層疊鐵電性之鋯鈦酸鉛(PZT),另一層則疊具有調變性之鈦酸鍶鋇(BST),利用PZT在電場除去時所保留之殘存極化量(Pr),當作材料的內建電場,如此一來當施加在此超晶格結構上之電場移除時,整體的電容值並不會回到未加電場時之值,即是非揮發性微波調諧特性。
    鈦酸鍶鋇((Ba,Sr)TiO3)材料具有高的調變力以及不差的介電損失,目前被認為是最適合發展微波元件的材料之一,因此在本實驗中使用BST作為提供調變力之材料,而選用PZT則是考量到鐵電材料的一些基本性質,如保存性(retention)和耐久性(endurance)以及寫入電壓,但在實驗中發現,PZT的保存性不如預期,以致於在外加電場移除後,電容隨著時間回復的很迅速。


    摘要 目錄 表目錄 圖目錄 第一章 緒論 …………………………………………………….1 第二章 文獻回顧 ……………………………………………….3 2.1 鐵電材料的研究及發展 ……………………………………3 2.1.1 鐵電材料晶體結構與極化機制 …………………………...3 2.1.2 鐵電材料相變化機制 ………………………………….…..6 2.1.3 鐵電薄膜近期之發展 ………………………………….…..7 2.2 鋯鈦酸鉛 ……………………………………………………..9 2.3 鈦酸鋇系鐵電材料 ………………………………………..10 2.3.1 鈦酸鋇 …………………………………………….………10 2.3.2 鈦酸鍶鋇 …………………………………………….……11 2.4 人工超晶格…………………………………………………12 2.4.1 BaTiO3/SrTiO3超晶格 …………………………….………13 2.4.2 其他超晶格系統…………………………………….……..15 2.5 電極材料 ………………………………………………..16 2.5.1 金屬電極 …………………………………………….…16 2.5.2 氧化物電極 ………………………………………….…17 2.6 鐵電薄膜的製程技術……………………………………18 2.7 鐵電材料的電性探討 …………………………………..21 2.7.1 介電性質………………………………………………...21 2.7.2 介電常數與介電損失 ………………………………….23 2.7.3 介電崩潰………………………………………………...24 2.7.4 漏電流機制……………………………………………...25 2.7.4.1 能障限制(barrier-limited) ………………………….....25 2.7.4.2本體限制(bulk-limited) …………………………….....27 第三章 實驗流程 ……………………………………..….43 3.1 底電極之製備……………………………………...……...43 3.1.1 Pt/Ti/SiO2/Si基板……………………………………….43 3.1.2 LNO下電極薄膜之製備………………………….......…43 3.2 BST/PZT 人工超晶格 ………………………………..….44 3.2.1 BST靶材製作 …………………………………………..44 3.2.2 PZT靶材製作…………………………………………....45 3.2.3 BST/PZT 人工晶格鍍製 ………………………….........45 3.3 Pt 上電極之製作 ………………………………………...45 3.4 薄膜分析量測 …………………………………………...46 3.4.1 薄膜結構分析…………………………………………..46 3.4.2 成份縱深分析…………………………………………..46 3.4.3 薄膜厚度量測以及表面微觀結構 ………………........46 3.4.4 電性分析 …………………………………………........47 第四章 結果與討論 ……………………………………….56 4.1 不同鍍製時間比之人工晶格性質比較 …………………56 4.1.1 結構分析………………………………………………...56 4.1.2 成分縱深分析 ………………………………………….57 4.1.3 表面結構 ……………………………………………….58 4.1.4 介電特性 ……………………………………………….58 4.1.5 鐵電特性 ……………………………………………….61 4.1.6 漏電流(J-E)特性 ……………………………………….62 4.2 不同總厚度比之人工晶格性質比較 ……………………64 4.2.1 結構分析………………………………………………...64 4.2.2 表面結構………………………………………………...64 4.2.3介電特性 ……………………………………………..…65 4.2.4 鐵電特性 ……………………………………………….66 4.2.5 漏電流(J-E)特性 ……………………………………...66 4.3 不同週期之人工晶格性質比較 ………………………67 4.3.1 結構分析 ………………………………………...........67 4.3.2 表面結構 …………………………………………...…68 4.3.3介電特性 …………………………………………...….68 4.3.4 漏電流(J-E)特性……………………………………….69 4.4 非揮發性的調變特性 ………………………………....69 4.4.1 結構分析 ……………………………………………...70 4.4.2 非揮發調變特性量測 ………………………………...70 第五章 結論…………………………………………….....93 參考文獻……………………………………………………...95 表目錄 表2.1 三十二種晶體對稱點群 ……………………………………29 表3.1 LaNiO3底電極之鍍膜參數 ………………………………48 表3.2 BaSrTiO3薄膜之鍍膜參數 ……………………………….48 表3.3 PbZrTiO3薄膜之鍍膜參數 ……………………………….49 表4.1 不同鍍製時間比之BST/PZT人工超晶格均方根粗糙度…71 表4.2 不同鍍製時間比之BST/PZT人工超晶格之理論介電常數值以及實際量測介電常數 ...……………………………….71 表4.3 BST/PZT人工超晶格之非揮發調變特性量測……………..72 圖目錄 圖2.1 晶體的對稱及特性分類圖 …………………………………..30 圖2.2 Displacement of ions from central position ……………………31 圖2.3 壓電性、焦電性、鐵電性材料之相屬關係圖 ………......…31 圖2.4 鐵電材料的晶域結構 ………………………………………..32 圖2.5 典型鐵電材料之電滯曲線圖 ………………………………..32 圖2.6 DPT行為1及正常鐵電行為2:(a)自發極化對溫度,(b)介電常數對溫度,(c)介電常數對頻率關係圖 …..………………….33 圖2.7 鐵電材料電容-電壓曲線圖:(a)鐵電相;(b)順電相……….33 圖2.8 鈣鈦礦結構示意圖……………………………………………34 圖2.9 PbZrO3-PbTiO3相圖 ………………………………………….34 圖2.10 鈦酸鋇相轉變之結晶構造與溫度關係圖 …………………35 圖2.11 BaTiO3/SrTiO3鐵電超晶格之結構示意圖………………...36 圖2.12 BaTiO3/SrTiO3超晶格中(a)介電常數隨週期厚度之變化(b)不同週期厚度之介電常數隨溫度的變化…………………………37 圖2.13 具(111)指向BaTiO3/SrTiO3超晶格之(a) (111)平面間距,與(b)介電常數隨單層(sublayer)厚度之變化………………………38 圖2.14 電漿中氣體電離示意圖……………………………………...39 圖2.15 濺鍍(Sputter)原理示意圖…………………………………....39 圖2.16 四種極化機制示意圖………………………………………..40 圖2.17 頻率變化對極化機構的影響圖 ……………………………40 圖2.18實際電容器的相位變化圖…………………………………...41 圖2.19 能障限制型漏電(a)蕭基放 射(b)穿隧效應………………..41 圖2.20本體限制傳導機制:(a)空間電荷限制傳導,(b)離子傳導,(c)普爾-法蘭克放射……………………………………………..42 圖3.1 LNO靶材製備流程圖…………………………………….…...50 圖3.2 Ba,Sr過量之BST靶材製備流程圖…………………………..51 圖3.3 Pb過量之PZT靶材製備流程圖……………………………...52 圖3.4 BST/PZT人工超晶格之濺鍍設備示意圖…………………….53 圖3.5 BST/PZT人工超晶格結構圖………………………………….53 圖3.6 上電極圖樣…………………………………………………….54 圖3.7 RT66A(Virtual ground mode)的等效電路圖…………………..54 圖3.8 RT66A量測P-E電滯曲線所使用之電壓波形……………….55 圖4.1 不同鍍製時間比之BST/PZT人工超晶格之XRD分析圖….73 圖4.2總鍍製時間為一小時, BST(1.5mins) / PZT(3.5mins)之人工超晶格SEM截面圖……………………………………………..73 圖4.3不同BST/PZT鍍製時間比之二次離子質譜儀分析圖(a).BST/PZT=1.5mins/3.5mins(b) .BST/PZT=4mins/1mins…74 圖4.4不同BST/PZT鍍製時間比之原子力顯微鏡表面結構圖(a).BST/PZT=1mins/4mins (b).BST/PZT=2.5mins/2.5mins (c).BST/PZT=4mins/1mins……………………………………75 圖4.5 不同BST/PZT鍍製時間比之介電常數及介電損失對頻率曲線,量測頻率由1KHz~1MHz (a).BST(mins)/PZT(mins)=1/4、1.5/3.5、2/3、2.5/2.5 (b).BST(mins)/PZT(mins)=4/1、3.5/1.5、3/2、2.5/2.5……………………………………………………76 圖4.6 總鍍製時間為一小時之單層鈦酸鍶鋇及單層鋯鈦酸鋇薄膜其介電常數對外加電場曲線,量測頻率為1MHz (a).靶材為(Ba0.6Sr0.4)1.2TiO3 (b).靶材為Pb1.1(Zr0.5Ti0.5)O3……………77 圖4.7不同BST/PZT鍍製時間比之介電常數對電場圖(a).BST(mins)/PZT(mins)=1/4、1.5/3.5、2/3、2.5/2.5 (b).BST(mins)/PZT(mins)=4/1、3.5/1.5、3/2、2.5/2……….78 圖4.8 模擬BST/PZT人工超晶格之串聯電容電路圖……………..79 圖4.9 總鍍製時間為一小時之單層鈦酸鍶鋇及單層鋯鈦酸鋇薄膜其電滯曲線圖 (a).靶材為(Ba0.6Sr0.4)1.2TiO3 (b).靶材為Pb1.1(Zr0.5Ti0.5)O3……………………………………………...80 圖4.10 不同BST/PZT鍍製時間比之電滯曲線圖………………..81 圖4.11不同BST/PZT鍍製時間比之漏電流(J-E)曲線,(a).BST(mins)/PZT(mins)=1/4、1.5/3.5、2/3、2.5/2.5 (b).BST(mins)/PZT(mins)=4/1、3.5/1.5、3/2、2.5/2.5….82 圖4.12 三種不同總鍍製時間,每一組BST/PZT人工晶格週期為 五分鐘(BST/PZT=2.5mins/2.5mins)之SEM圖;(a)鍍製時間45分鐘(9個週期);(b)鍍製時間60分鐘(12個週期)(c)鍍製時間75分鐘(15個週期)…………………………………………..83 圖4.13 三種不同總鍍製時間,每一組BST/PZT人工晶格週期為 五分鐘(BST/PZT=2.5mins/2.5mins)之AFM圖;(a)鍍製時間45分鐘(9個週期);(b)鍍製時間60分鐘(12個週期)(c)鍍製時間75分鐘(15個週期) ………………………………………….84 圖4.14 三種不同總鍍製時間(45分鐘、60分鐘、75分鐘),每一組(BST/PZT=2.5mins/2.5mins)人工晶格週期為 五分鐘之介電常數及介電損耗對頻率做圖…………………………………...85 圖4.15 三種不同總鍍製時間(45分鐘、60分鐘、75分鐘),每一組人工晶格週期為 五分鐘(BST / PZT = 2.5mins/2.5mins)之非線性介電常數圖…………………………………………………...86 圖4.16 三種不同總鍍製時間(45分鐘、60分鐘、75分鐘),每一組人工晶格週期為 五分鐘(BST / PZT = 2.5mins/2.5mins)之電滯曲線圖。…………………………………………………………86 圖4.17 三種不同總鍍製時間(45分鐘、60分鐘、75分鐘),每一組人工晶格週期為 五分鐘(BST / PZT = 2.5mins/2.5mins)之漏電流(J-E)圖。……………………………………………………….87 圖4.18 三種不同人工超晶格週期(BST/PZT=1.5mins/1.5mins、2.5mins/2.5mins、5mins/5mins)之XRD分析圖。……………87 圖4.19 三種不同週期,總鍍製時間為一小時之人工超晶格AFM圖。(a)(BST/PZT=1.5mins/1.5mins)(b)(BST/PZT=2.5mins/2.5mins) (c)(BST/PZT=5mins/5mins) …………………………………...88 圖4.20 三種不同週期,總鍍製時間為一小時之人工超晶格其介電常數及介電損耗對頻率圖。……………………………………..89 圖4.21 三種不同週期,總鍍製時間為一小時之人工超晶格之非線性介電行為圖…………………………………………………….90 圖4.22 三種不同週期,總鍍製時間一小時之BST/PZT人工超晶格之漏電流(J-E)圖。……………………………………………….91 圖4.23 於625oC下高溫鍍膜,氬氧比為(13.5sccm/1.5sccm),總鍍製時間為60分鐘,每個週期為五分鐘(BST/PZT =2.5mins/2.5mins)之XRD分析圖。……………………………………………..91 圖4.24 於625oC下高溫鍍膜,氬氧比為(13.5sccm/1.5sccm),總鍍製時間為60分鐘,每個週期為五分鐘(BST/PZT =2.5mins/2.5mins)之XRD分析圖。……………………………………………….92

    參考文獻
    [1]Y. Xu, “Ferroelectric Materials and Their Applications”, North- Holland, Netherlands, (1991).
    [2]J. F. Scott, “Ferroelectric Memories” Springer,(2000)p6.
    [3.]劉恆睿, ”利用磁控濺鍍法在鎳酸鑭上沈積鋯鈦酸鋇薄膜作為微波變容器之研究” ,清華大學,碩士論文, (2003)
    [3] B Yang, P D Townsend and R Fromknecht ”Low temperature detection of phase transitions and relaxation processes in strontium titanate by means of cathodoluminescence” JOURNAL OF PHYSICS: CONDENSED MATTER,, 16 (2004) 8377–8386
    [4]A. J. Moulson, J. M. Herbert, “Electroceramics-Materials properties and application”, published by CHAPMAN & HALL (1990).
    [5]施修正,“利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜之研究”, 清華大學, 博士論文, (1999).
    [6.]賴昇志, “以LaNiO下電極,開發PZT鐵電記憶體低溫製成之研究”, 清華大學, 碩士論文, (2001)
    [7]林居南, “添加劑對鈦酸鋇陶瓷電性及相變化的影響”, 清華大學, 博士論文, (1990).
    [8]D.Hennings, and A. Schnell, “Diffuse Ferroelectric Phase Transitions in Ba(Zr,Ti)O3 Ceramics”, J. American Ceramic Society, Vol 65, No. 11, p539, (1982).
    [9]洪正隆,“鑭系元素添加及人工晶格結構之鋯酸鉛鋇薄膜於鐵電記憶體應用之研究”(2004)
    [10]C. Feldman, “Formation of thin films of BaTiO3 by Evaporation”, View of Science Instrument, Vol. 26(5), p463, (1954).
    [11]A.E. Feuersanger, A.K. Hagenlocher and A.L. Solomln, “Preparation and Properties of Thin Barium Titanate Films”, J. electrochem. Soc. 111, 1387, (1964).
    [12]P. C. V. Buskirk, R.Gardiner, P. S. Kirlin, S. Nutt, “Reduced-Pressure MOCVD of Highly Crystalline BaTiO3 Thin Films”, J. Mater. Res., 7(3), (1992) 542.
    [13]L. A. Wills, B. W. Wessels, D. S. Richeson, and T. J. Marks, “Epitaxial Growth of BaTiO3 Thin Films By Organometallic Chemical Vapor Deposition”, Appl. Phys. Lett., 60(1), (1992) 41.
    [14]Chin-Lin Liu, Zhen-Yue Lee, Tai-Bor Wu, Shiang-Lan Lung and Rich Liu, “Polarization Switching Characteristics of Pb(Zr0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOx/Pt Electrode”, Jpn. J. Appl. Phys. 41, (2002) 6054.
    [15]A. Nazeri, m. Kahn, T. Kidd, “Strontium-Barium-Titanate Thin Films by Sol-Gel Processing”, J. Mater. Sci. Lett., 14, (1993) 1085.
    [16]D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition”, J. Appl. Phys. 88, (2000) 5941.
    [17] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
    [18]S. G. Yoon, J. C. Lee, and A. Safari, “Preparation of Thin-Film (Ba0.5,Sr0.5)TiO3 by the Laser Ablation Technique and Electrical Properties”, J. Appl. Phys., 76(5), (1994) 2999.
    [19] J. K. Lee, C. H. Kim, H. S. Suh, and K. S. Hong, “Correlation between internal stress and ferroelectric fatigue in Bi4–xLaxTi3O12 thin films”, Appl. Phys. Lett. 80, (2002) 3593.
    [20] S. D. Bu, B. S. Kang, B. H. Park, and T. W. Noh, J. Korean Phys. Soc. 36, (2000) L9.
    [21] H. N. Lee, and Dietrich Hesse, “Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations”, Appl. Phys. Lett. 80, (2002) 1040.
    [22] H. N. Lee, Dietrich Hesse, Nikolai Zakharov, and Ulrich Gősele, Science 296, (2002) 2006.
    [23] S. Jerry Fiedziuszko, Fellow, IEEE, Ian C. Hunter, Senior Member, IEEE, Tatsuo Itoh, Fellow, IEEE, Ypshio Kobayashi, Fellow, IEEE, Toshio Nishikawa, Fellow, IEEE, Steven N. Stitzer, Senior Member, IEEE, and Kikuo Wakino, Life Fellow, IEEE, “Dielectric Materials, Devices, and Circuits”, IEEE Trans. On Microwave Theory and Techniques, Vol. 50, No. 3, March 2002.
    [24] Spartak S. Gevorgian, Senior Member, IEEE, and Erik Ludvig Kollberg, Fellow, IEEE, “Do We Really Need Ferroelectrics in Paraelectric Phase Only in Electrically Controlled Microwave Devices?”, IEEE Trans. On Microwave Theory and Techniques, Vol. 49, No. 11, November 2001.
    [25]李振岳,”以Pt(O)製作下電極對PZT鐵電薄膜的影響研究”,清華大學,(2001)
    [26] “Handbook of Thin Film Materials”, editd by Hari Singh Nalwa (2002).
    [27] J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, D. Y. Kaufman, and A. R. Krauss, “Composition-control of magnetron-sputter-deposited (BaxSr1-x)Ti1+yO3+z thin films for voltage tunable devices”, Appl. Phys. Lett. 76, (2000) 625.
    [28] B. H. Park, Y. Gim, Y. Fan, Q. X. Jia, and P. Lu, “Hogh nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates”,Appl. Phys. Lett. 77, (2000) 2587.
    [29] L. A. Knauss, J. M. Pond, J. S. Horwitz, D. B. Chrisey, C. H. Mueller, and Randolph Treece,”The effect of annealing on the structure and dielectric properties of BaxSr1-xTiO3 ferroelectric thin films”, Appl. Phys. Lett. 69, (1996) 25.
    [30] C. L. Canedy, H. Li, S. P. Alpay, L. Salamanca-Riba, A. L. Roytburd, and R. Ramesh, “Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects”, Appl. Phys. Lett. 77, (2000) 1695.
    [31] W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchefer, D. B. Chrisey, and J. S. Horwitz, “Microwave properties of tetragonally distorted (Ba0.5Sr0.5)TiO3 thin films”, Appl. Phys. Lett. 76, (2000) 1185.
    [32] W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchoefer, C. M. Gilmore, and D. B. Chrisey, “The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films”, Appl. Phys. Lett. 74, (1999) 1033.
    [33] B. H. Park, E. J. Peterson, Q. X. Jia, J. Lee, X. Zeng, W. Si, and X. X. Xi, “Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films”, Appl. Phys. Lett. 78, (2001) 533.
    [34] H.-C. Li, W. Si, R.-L. Wang, Y. Xuan, B.-T. Liu, and X. X. Xi, Mater. Sci. Eng., B 56, (1998) 218.
    [35] H. Tabata, H. Tanaka, T. Kawai, and M. Okuyama, “Strained SrTiO3/BaTiO3 Superlattices Formed by Laser Ablation Technique and Their High Dielectric Properties”, Jpn. J. Appl. Phys. 34, (1995) 544.
    [36] Hitoshi Tabata, Hidekazu Tanaka, and Tomoji Kawai,” Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties”, Appl. Phys. Lett. 65, (1994) 1970.
    [37] O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata and T. Kawai, “Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition”, Appl. Phys. Lett. 77, 3257 (2000).
    [38] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata and T. Kawai, “Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with "asymmetric" structure”, J. Appl. Phys. 91, (2002) 2290.
    [39] I. Kanno, S. Hayashi, R. Takayama, and T. Hirao, “Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering”, Appl. Phys. Lett. 68, 328 (1996).
    [40] A. Erbil, Y. Kim, and R. A. Gerjardt, “Giant Permittivity in Epitaxial Ferroelectric Heterostructures”, Phys. Rev. Lett. 77, 1629 (1996).
    [41] K. H. Yoon, J. H. Shin, J. H. Park, and D. H. Kang, “Stacking effects on dielectric properties of sol-gel derived Pb(Zr0.53Ti0.47)O3/PbTiO3 thin films”, J. Appl. Phys. 83, 3626 (1998).
    [42]C. Wang, M. Evsigneev, Q. F. Fang and Z.G. Zhu, “Dielectric properties of Pb(Zr20Ti80)O3/Pb(Zr80Ti20)O3 multilayered thin films prepared by rf magnetron sputtering”, Appl. Phys. Lett. 82,2880(2003)
    [43] J. H. Jang and K. H. Yoon, “Electric fatigue properties of sol–gel derived Pb(Zr, Ti)O3/PbZrO3 multilayered thin films”, Appl. Phys. Lett. 75, 130 (1999).
    [44] S. Wolf and R. N. Tauber, “Silicon Processing for the VLSI Era, Lattice Press”, CA Sunset Beach, (1986) 384.
    [45] T. Ogawa, S. Shindou, A. Senda and T. Kasanami, Mater. Res. Soc. Symp. Proc., 243, (1992) 93.
    [46] S. A. Mayers and E. R. Mayers, Mater. Res. Soc. Symp. Proc., 243, (1992) 107.
    [47] P. Revesz, J. Li, N. Szabo Jr., J. W. Mayer, D. Caudillo and E. R. Mayers, Mater. Res. Soc. Symp. Proc., 243, (1992) 101.
    [48] K. B. Lee, B. R. Rhee and S. K. Cho, Mater. Res. Soc. Symp. Proc., 433, (1996) 181.
    [49] D. Barrow, C. V. R. V. Kumar, R. Pasual and M. Sayer, Mater. Res. Soc. Symp. Proc., 243, (1992) 113.
    [50]K. Sreenivas, M. Sayer, T. Laursen, J. L. Whitton, R. Pascual, D. J. Johnson D. T. Amw , G.I. Sproule, D.F. Mitchell, M. J. Graham, S.C. Gujyathi, and K.Oxorn “Characterization of Lead Zirconate Titanate (PZT)-Indium Tin oxide(ITO) Thin Film Interface”, Mat, Res. Soc.Symp. Proc. Vol. 200, (1990)255
    [51]D. P. Vijay and S. B.Desu, “Electrode for Pb(ZrxTi1-x)O3 Ferroelectric Thin Films” J. Electrochem. Soc., 140(9), (1993) 2640.
    [52]L.A. Bursill, I.M. Reaney, D.P. Vijay, and S.B. Desu, “Composition of Lead Zirconate Titanate Thin Films on Ruthenium Oxide and Platinum Electrodes”, J. Appl. Phys., 75(3), (1994)1521
    [53] S.D. Berstein, T.Y. Wong, Yanina Kisler, and R.W. Tustison, “Fatigue of Ferroelectric PbZrxTiyO3 Capacitors with RuOx Electrodes”, J. Mater. Res.8(1), (1993)12.
    [54]I. Chung, J.K. Lee, W.I. Lee, C.W. Chung, and S.B.Desu, “Study on Multilayered Electrodes for Ferroelectric Thin Film Capacitors”, Mat. Res. Soc. Symp. Proc. Vol. 361,(1994)241
    [55]楊清泉,”利用LaNiO3電極製備高(100)優選方向性(Pb,La)TiO3溶凝膠薄膜之研究”, 清華大學, 碩士論文, (1995)
    [56] C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu and T. B. Wu, "Preparation of (100)-Oriented Metallic LaNiO3 Thin Films on Si Substrates by RF Magnetron Sputtering for the Growth of Textured PZT", Appl. Phys. Lett., 66, (1995) 2643.
    [57] M. S. Chen, T. B. Wu and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”,Appl. Phys. Lett., 68, (1996) 1430.
    [58] M. S. Chen, J. M. Wu, and T. B. Wu, "Effects of (100)-Textured LaNiO3 Electrode on the Crystallization and Properties of Sol-gel Derived Pb(Zr0.53Ti0.47)O3 Thin Films", Jpn. J. Appl. Phys., 34(9A) (1995) 4870.
    [59]J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, ”Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys. 70, (1991) 382.
    [60]J. H. Tseng and T. B. Wu, ”Ferroelctric lead barium zirconate thin film of high fatigue resistance”, Appl. Phys. Lett., 78, (2001) 1721
    [61]J. H. Tseng and T. B. Wu, Key Engineering Materials, 7, (2002) 133
    [62]V. Craciuna) and R. K. Singh,” Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation” Appl. Phys. Lett., 76, (2000) 1932
    [63]B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMS”, O. Auciello and R. Waser eds., Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers, (1995) 373.
    [64] A. J. Moulson and J. M. Herbert, “Electroceramics-Materials、Properties、Applications”, Chapman and Hall, (1990).
    [65] 吳朗,“電子陶瓷-介電”, 全欣資訊圖書, (1994).
    [66]Milton Ohring, ”The Material Science of Thin Films”, Academic Press
    [67]李雅明,”固態電子學”, 全華出版社, 1995年5月
    [68]Takashi Mihara and Hitoshi Watanabe, “Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin Film Capacitors:Part I“, Jpn. J. Appl. Phys., 1995,Vol.34 pp5664-5673
    [69] Takashi Mihara and Hitoshi Watanabe, “Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin Film Capacitors:PartII “, Jpn. J. Appl. Phys., 1995,Vol.34 pp5674-5682
    [70]Y.Ishibashi, N.Ohashi, and T.Tsusumi, “Structural Refinement of X-Ray Diffraction Profile for Artificial Superlattices “, Jpn. J. Appl. Phys. 39,186(2000).
    [71]劉勁麟,”氧化物電極上製備鐵電記憶體應用之PZT薄膜的研究”,博士論文(2002),清華大學
    [72]吳啟明,”利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鈦酸鍶鋇薄膜的研究”, 國立清華大學,博士論文,(1997)
    [73]林俊傑,”鈦酸鍶鋇薄膜之導電性擴傘阻絕層的研製”國立清華大學,碩士論文,(1997)
    [74]孫郁明,”添加鑭系元素(La,Sm)之鈦酸鉍鐵電薄膜應用於非揮發性記憶體之研究”, 清華大學,博士論文,(2003)
    [75]A.J. Moulson and J.M. Herbert, “Electroceramics Materials, Properties, Applications”(1990)p52

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE