簡易檢索 / 詳目顯示

研究生: 李信成
Lee, Hsin-Cheng
論文名稱: 透過超材料實現相位偵測法下的超⾼靈敏度折射係數感測器及直接檢測細胞內影像
Realizing ultra-sensitive refractive index sensor under phase interrogation and label-free, coupler-free and intracellular bio-image by plasmonic metamaterials
指導教授: 嚴⼤任
Yen, Ta-Jen
口試委員: 陳浩夫
黃勝廣
黃承彬
陳嘉勻
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 73
中文關鍵詞: 電漿超材料生物感測器生物影像
外文關鍵詞: Plasmonics, Metamaterials, Bio-sensors, Bio-image
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超材料是⼀種具有特殊且不易在⾃然界得到的性質的次波⾧結構。由於光學超材料在
    在⽣物感測、⽣物影像具有可能性的應⽤,研究學者投⼊⼤量的⼯作在此。在光學區
    域,以⾦屬構成的超材料中,電漿⼦效應扮演⼀個重要的⾓⾊。⽽此論⽂的主題是在
    利⽤超材料及電漿⼦的特性,來實現超⾼靈敏度的⽣物感測器及細胞內影像。
    ⾸先,我們設計⼀個以X 形結構為主的感測器,其在近紅外頻段具有四極電漿⼦共振;
    並結合了我們設計的共光路相位計算⽅式,⽽達到⾼折射係數解析的結果。相較於波
    ⾧偵測法,透過相位偵測法的量測⽅式,我們感測器的解析度可以達到接近兩個數量
    級的進步。事實上有兩個⽅式可以優化以相位偵測法為量測⽅式的感測器:⼀個是打
    破電漿⼦結構的對稱性,讓s 波及p 波之間的相位對⽐達到最⼤;另⼀個是利⽤具有
    較⾼共振模態的電漿⼦結構,因為其可以提供較好的品質因⼦的共振模式。但是因為
    越⾼的模態,其光學截⾯越⼩,會影響到激發效率,所以我們的折衷辦法是取四極共
    振作為我們的設計條件。⽤相位偵測法的量測結果,可以得到1.15×10-6 RIU 的解析度,
    相較於控制組的量測結果(9.90×10-5 RIU)好,也⽐⽬前此研究領域的電漿⼦感測器
    的結果要好。
    其次,我們以隙環共振結構達成了以電漿⼦所建⽴的細胞影像。相較於表⾯電漿⼦顯
    微鏡,隙環共振結構顯微鏡因為其有免標記、免耦合器、可調頻以及較深的感測距離
    的特性,後著有較⾼的競爭⼒。我們的實驗結果顯⽰可以利⽤⼈類間葉幹細胞內部的
    折射率分布圖,且同時可以得到待測細胞官能基的資訊。因此,我們預期此隙環共振
    器顯微影像可以實現更簡單的光學組態與更佳的偵測深度來作全細胞影像的應⽤。


    Metamaterials, artificially structured composite materials with subwavelength unit cells, exhibit exotic properties not easily obtainable or unavailable in nature. Motivated by the promising applications of metamaterials at optical wavelengths in areas such as sensing and bio-image, researchers have devoted considerable efforts to advancing the science and engineering of optical metamaterials. In the optical regime, plasmonic effects can play an important role when metals serve as one of the components in a metamaterial assembly. The objective of this dissertation is to demonstrate the ultra-sensitive refractive index sensor and enhanced intracellular bio-image from the interplay between metamaterials and plasmonics.
    In the dissertation, we design an X-shaped plasmonic sensor (XPS) that supports plasmonic resonances of quadrupole modes at near-infrared region, combining with our common-path optical system and phase-contrast algorithm to boost the sensing resolution of refractive-index plasmonic sensors. The measured sensing resolution shows two orders greater than that of the conventional plasmonic refractive-index sensors. In fact, there exist two critical demands to optimize the sensitivity of a plasmonic sensor in phase-interrogation measurements. One is to break the symmetry of the plasmonic structure, such that the corresponding resonant wavelengths for s-polarized and p-polarized modes become different, elevating the phase contrast between the s-polarized and p-polarized modes. The other is to employ high-order resonance modes that allow better sensing capability due to their greater quality factors. The phase change of a resonance mode with a high quality factor is sharper than a resonance mode with a low quality factor, which helps to increase the sensitivities for phase interrogation. Therefore, high-order modes are certainly more sensitive, but their scattering cross section is typically too weak to provide a detectable signal level or a stable signal-to-noise ratio. We meet these two criteria to show an ultra-sensitive refractive index sensor benefitted by the designed X-shaped plasmonic metamaterial and custom-built phase-interrogation system. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10-6 RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10-5 RIU), but also superior than current reported plasmonic sensors.
    In addition, we also develop a compact plasmonic bio-images based on split-ring resonators (SRRs). Owning advantages such as label-free, coupler-free, tunable spectrum range (from MIR to VIS) and longer detection length, the SRR microscopy (SRRM) is a strong competitor compared to the surface plasmon resonance microscopy (SPRM) for observing bio-target. Our experimental results have successfully demonstrated its capability of constructing the refractive index distribution images of human bone marrow-derived mesenchymal stem cells (hMSCs) and meanwhile, obtaining the information of functional groups from the target cells. Therefore, we expect that the SRR microscopy (SRRM) delivers much simple optical configuration and better penetration depth for truly whole-cell imaging applications.

    Chapter 1 Introduction & Literature Review 1 1.1 Summary 1 1.2 Introduction to Metamaterials 2 1.3 Surface plasmons and Plamonics 8 1.3.1 Surface plasmons at semi-infinite metal surface 8 1.3.2 Surface plasmons at metal thin film surface 12 1.4 Surface plasmon resonance sensor 16 1.4.1 Excitation of surface plasmons 16 1.4.2 Total internal reflection configuration 16 1.4.3 Grating configuration 18 1.5 Interrogations of Kretschmann-Raether SPR system 20 1.5.1 Angle interrogation 20 1.5.2 Wavelength interrogation 23 1.5.3 Phase interrogation 26 1.5.4 Considerations on sensing resolution 28 Chapter 2 Experimental Methods 30 2.1 Simulation 30 2.2 Fabrication of plasmonic metamaterials 31 2.3 Phase interrogation measurement 32 2.3.1 Algorithm of phase interrogation method 32 2.3.2 Optical setup of phase interrogation method 33 Chapter 3 Demonstration of an ultra-sensitive refractive index sensor under phase interrogation by plasmonic metamaterials 39 3.1 Research motivation 39 3.2 Design of plasmonic metamaterials 40 3.3 Fabrication of X-shaped plasmonic metamaterials 41 3.4 Results and discussion 42 3.5 Conclusions 44 Chapter 4 Label-free, coupler-free, scalable and intracellular bio-image by plasmonic metamaterials 49 4.1 Research motivation 49 4.2 Experimental details 51 4.3 Results and discussion 53 4.4 Conclusions 57 Chapter 5 Conclusions 61 Chapter 6 Future Work 63 References 64

    1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    6. N. Seddon, and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
    7. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, Jr., B. I. Wu, J. A. Kong, and M. Chen, “Cerenkov radiation in materials with negative permittivity and permeability,” Opt. Express 11(7), 723–734 (2003).
    8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    9. H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
    10. N. Fang, H. Lee, C. Sun and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534-537 (2005).
    11. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
    12. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
    13. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    14. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115-1127 (2007).
    15. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
    16. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. 111, (Springer-Verlag: 1988).
    17. Johnson, J.D. Classical Electrodynamics. (Wiley: 1998).
    18. Maier, S.A. Plasmonics. (Springer: 2007).
    19. Lirtsman, V. et al. Surface-plasmon resonance with infrared excitation: Studies of phospholipid membrane growth. J. Appl. Phys. 98, 093506 (2005).
    20. PETTIT, R., SILCOX, J. & VINCENT, R. Measurement of Surface-Plasmon Dispersion in Oxidized Aluminum Films. Phys Rev B 11, 3116-3123 (1975).
    21. Zacher, T. & Wischerhoff, E. Real-Time Two-Wavelength Surface Plasmon Resonance as a Tool for the Vertical Resolution of Binding Processes in Biosensing Hydrogels. Langmuir 18, 1748-1759 (2002).
    22. Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys Rev Lett 85, 3966-3969 (2000).
    23. Shelby, R.A. Experimental Verification of a Negative Index of Refraction. Science 292, 77-79 (2001).
    24. SARID, D. Long-Range Surface-Plasma Waves on Very Thin Metal-Films. Phys Rev Lett 47, 1927-1930 (1981).
    25. Lyndin, N. et al. Long-range surface plasmons in asymmetric layered metal-dielectric structures. Sensor Actuat B-Chem 54, 37-42 (1999).
    26. ROCCA, M. Low-Energy Eels Investigation of Surface Electronic Excitations on Metals. Surf Sci Rep 22, 1-71 (1995).
    27. INAGAKI, T., KAGAMI, K. & ARAKAWA, E. Photoacoustic Observation of Nonradiative Decay of Surface-Plasmons in Silver. Phys Rev B 24, 3644-3646 (1981).
    28. KRETSCHMANN, E. Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen. Z. Physik 241, 313-324 (1971).
    29. Yeatman, E. Resolution and sensitivity in surface plasmon microscopy and sensing. Biosens Bioelectron 11, 635-649 (1996).
    30. Fontana, E. Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media. Appl Optics 45, 7632-7642 (2006).
    31. Kim, D. Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors. Appl Optics 44, 3218-3223 (2005).
    32. Kreiter, M., Mittler, S., Knoll, W. & Sambles, J. Surface plasmon-related resonances on deep and asymmetric gold gratings. Phys Rev B 65, - (2002).
    33. Lezec, H. et al. Beaming light from a subwavelength aperture. Science 297, 820-822 (2002).
    34. Lawrence, C., Geddes, N., Furlong, D. & Sambles, J. Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings. Biosens Bioelectron 11, 389-400 (1996).
    35. Ekgasit, S., Thammacharoen, C., Yu, F. & Knoll, W. Evanescent Field in Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopies. Anal. Chem. 76, 2210-2219 (2004).
    36. Gwon, H.R. & Lee, S.H. Spectral and Angular Responses of Surface Plasmon Resonance Based on the Kretschmann Prism Configuration. MATERIALS TRANSACTIONS 51, 1150-1155 (2010).
    37. Liang, H. et al. Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films. Sensor Actuat B-Chem 149, 212-220 (2010).
    38. Chiang, Y. et al. Innovative antimicrobial susceptibility testing method using surface plasmon resonance. Biosens Bioelectron 24, 1905-1910 (2009).
    39. Yih, J., Chien, F., Lin, C., Yau, H. & Chen, S. Angular-interrogation attenuated total reflection metrology system for plasmonic sensors. Appl Optics 44, 6155-6162 (2005).
    40. Hu, W.P. et al. Immunodetection of pentamer and modified C-reactive protein using surface plasmon resonance biosensing. Biosens Bioelectron 21, 1631-1637 (2006).
    41. Meyer, M.H.F., Hartmann, M. & Keusgen, M. SPR-based immunosensor for the CRP detection—A new method to detect a well known protein. Biosens Bioelectron 21, 1987-1990 (2006).
    42. Yanase, Y. et al. Living cell positioning on the surface of gold film for SPR analysis. Biosens Bioelectron 23, 562-567 (2007).
    43. KAWAGUCHI, T. et al. Fabrication of a novel immunosensor using functionalized self-assembled monolayer for trace level detection of TNT by surface plasmon resonance. Talanta 72, 554-560 (2007).
    44. Hong, D.G., Kim, T.W., Kim, K.B., Yuk, J.S. & Ha, K.S. Development of an immunosensor with angular interrogation-based SPR spectroscopy. Meas. Sci. Technol. 18, 1367-1371 (2007).
    45. Homola, J., Koudela, I. & Yee, S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensor Actuat B-Chem 54, 16-24 (1999).
    46. Nenninger, G., Piliarik, M. & Homola, J. Data analysis for optical sensors based on spectroscopy of surface plasmons. Meas. Sci. Technol. 13, 2038-2046 (2002).
    47. STENBERG, E., PERSSON, B., ROOS, H. & URBANICZKY, C. Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins. J Colloid Interf Sci 143, 513-526 (1991).
    48. Homola, J., Yee, S.S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensor Actuat B-Chem 54, 3-15 (1999).
    49. LIEDBERG, B., NYLANDER, C. & LUNDSTROM, I. Biosensing with Surface-Plasmon Resonance - How It All Started. Biosens Bioelectron 10, R1-R9 (1995).
    50. Lam, W.W., Chu, L.H., Wong, C.L. & Zhang, Y.T. A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sensor Actuat B-Chem 105, 138-143 (2005).
    51. Ho, H., Wu, S., Yang, M. & Cheung, A. Application of white light-emitting diode to surface plasmon resonance sensors. Sensor Actuat B-Chem 80, 89-94 (2001).
    52. Akimoto, T., Sasaki, S., Ikebukuro, K. & Karube, I. Effect of incident angle of light on sensitivity and detection limit for layers of antibody with surface plasmon resonance spectroscopy. Biosens Bioelectron 15, 355-362 (2000).
    53. Ziblat, R., Lirtsman, V., Davidov, D. & Aroeti, B. Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells. Biophysical Journal 90, 2592-2599 (2006).
    54. Bolduc, O.R., Live, L.S. & Masson, J. High-resolution surface plasmon resonance sensors based on a dove prism. Talanta 77, 1680-1687 (2009).
    55. Liu, X. et al. Wavelength-modulation surface plasmon resonance sensor. TrAC Trends in Analytical Chemistry 24, 887-893 (2005).
    56. Klenkar, G. & Liedberg, B. A microarray chip for label-free detection of narcotics. Anal Bioanal Chem 391, 1679-1688 (2008).
    57. Chinowsky, T.M. et al. Compact, high performance surface plasmon resonance imaging system. Biosens Bioelectron 22, 2208-2215 (2007).
    58. Lee, H.J., Li, Y., Wark, A.W. & Corn, R.M. Enzymatically Amplified Surface Plasmon Resonance Imaging Detection of DNA by Exonuclease III Digestion of DNA Microarrays. Anal. Chem. 77, 5096-5100 (2005).
    59. Ladd, J., Taylor, A.D., Piliarik, M., Homola, J. & Jiang, S. Hybrid Surface Platform for the Simultaneous Detection of Proteins and DNAs Using a Surface Plasmon Resonance Imaging Sensor. Anal. Chem. 80, 4231-4236 (2008).
    60. Kanda, V., Kariuki, J.K., Harrison, D.J. & McDermott, M.T. Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging. Anal. Chem. 76, 7257-7262 (2004).
    61. Huang, H. & Chen, Y. Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging. Biosens Bioelectron 22, 644-648 (2006).
    62. Okumura, A., Sato, Y., Kyo, M. & Kawaguchi, H. Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Analytical Biochemistry 339, 328-337 (2005).
    63. Ma, X. et al. Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors. Sensors and Actuators A: Physical 157, 9-14 (2010).
    64. Chou, C., Wu, H., Huang, Y., Chen, Y. & Kuo, W. Characteristics of a paired surface plasma waves biosensor. Opt Express 14, 4307-4315 (2006).
    65. Kabashin, A. & Nikitin, P. Interferometer based on a surface-plasmon resonance for sensor applications. Quantum Electron+ 27, 653-654 (1997).
    66. Nikitin, P., Beloglazov, A., Kochergin, V., Valeiko, M. & Ksenevich, T. Surface plasmon resonance interferometry for biological and chemical sensing. Sensor Actuat B-Chem 54, 43-50 (1999).
    67. Kochergin, V., Beloglazov, A., Valeiko, M. & Nikitin, P. Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications. Quantum Electron+ 28, 444-448 (1998).
    68. Nelson, S., Johnston, K. & Yee, S. High sensitivity surface plasmon resonance sensor based on phase detection. Sensor Actuat B-Chem 35, 187-191 (1996).
    69. Ran, B. & Lipson, S. Comparison between sensitivities of phase and intensity detection in surface plasmon resonance. Opt Express 14, 5641-5650 (2006).
    70. Ong, B.H., Yuan, X., Tjin, S.C., Zhang, J. & Ng, H.M. Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sensor Actuat B-Chem 114, 1028-1034 (2006).
    71. Xia, L., Yin, S., Gao, H., Deng, Q. & Du, C. Sensitivity Enhancement for Surface Plasmon Resonance Imaging Biosensor by Utilizing Gold–Silver Bimetallic Film Configuration. Plasmonics 6, 245-250 (2011).
    72. Wark, A.W., Lee, H.J. & Corn, R.M. Long-Range Surface Plasmon Resonance Imaging for Bioaffinity Sensors. Anal. Chem. 77, 3904-3907 (2005).
    73. Nenninger, G., Tobiska, P., Homola, J. & Yee, S. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensor Actuat B-Chem 74, 145-151 (2001).
    74. Chien, F.C. & Chen, S.J. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosens Bioelectron 20, 633-642 (2004).
    75. He, L., Smith, E.A., Natan, M.J. & Keating, C.D. The Distance-Dependence of Colloidal Au-Amplified Surface Plasmon Resonance. J Phys Chem B 108, 10973-10980 (2004).
    76. KUME, T., NAKAGAWA, N., HAYASHI, S. & YAMAMOTO, K. Interaction Between Localized and Propagating Surface-Plasmons - Ag Fine Particles on Al Surface. Solid State Commun 93, 171-175 (1995).
    77. Byun, K.M., Yoon, S.J., Kim, D. & Kim, S.J. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt Lett 32, 1902-1904 (2007).
    78. Yu, F. et al. Simultaneous Excitation of Propagating and Localized Surface Plasmon Resonance in Nanoporous Gold Membranes. Anal. Chem. 78, 7346-7350 (2006).
    79. Scarano, S., Mascini, M., Turner, A.P.F. & Minunni, M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25, 957-966 (2010).
    80. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nature Materials 7, 442-453 (2008).
    81. A. G. Brolo, "Plasmonics for future biosensors," Nature Photonics 6, 709-713 (2012).
    82. E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, "Nanoplasmonic Probes of Catalytic Reactions," Science 326, 1091-1094 (2009).
    83. P. Zijlstra, P. M. R. Paulo, and M. Orrit, "Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod," Nature Nanotechnology 7, 379-382 (2012).
    84. Y. Gu, Q. Li, and G. P. Wang, "Dielectric supported ring-shaped metal disks on a metal film for ultrasensitive refractive index sensing," Optics Letters 36, 3326-3328 (2011).
    85. A. E. Cetin and H. Altug, "Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing," ACS Nano 6, 9989-9995 (2012).
    86. Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, "Plasmonic metamaterials for ultrasensitive refractive index sensing at near infrared," Journal of Applied Physics 109, 023104 (2011).
    87. B. B. Zeng, Y. K. Gao, and F. J. Bartoli, "Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings," Applied Physics Letters 105, 161106 (2014).
    88. P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, "Vertical split-ring resonator based nanoplasmonic sensor," Applied Physics Letters 105, 033105 (2014).
    89. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Boosting the Figure-Of-Merit of LSPR-Based Refractive Index Sensing by Phase-Sensitive Measurements," Nano Letters 12, 1655-1659 (2012).
    90. R. S. Moirangthem, Y. C. Chang, and P. K. Wei, "Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry," Optics Letters 36, 775-777 (2011).
    91. T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, "Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor," Review of Scientific Instruments 81, 053102 (2010).
    92. Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, "Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications," Ann Phys-Berlin 524, 637-662 (2012).
    93. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, "Sensitivity of collective plasmon modes of gold nanoresonators to local environment," Optics Letters 35, 956-958 (2010).
    94. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, "Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection," Nature Materials 12, 304-309 (2013).
    95. C. T. Li, H. F. Chen, I. W. Un, H. C. Lee, and T. J. Yen, "Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection," Optics Express 20, 3250-3260 (2012).
    96. A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," Journal of Physical Chemistry B 108, 6961-6968 (2004).
    97. M. Quinten, A. Heilmann, and A. Kiesow, "Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films," Appl Phys B-Lasers O 68, 707-712 (1999).
    98. In Figure 3.3, a 1312-nm fiber laser was used as the excitation source for XPS, and a 633-nm diode laser was applied for optical path alignment. A calcite polarizer in front of the laser is used to increase the extinction ratio of the linear polarization up to 105:1. A half-wave plate is used to properly adjust the ratio between the s-wave and the p-wave, of which work as a reference beam and the excitation beam respectively. A rectangular mirror set with two mirrors oriented in 135o and 45o is used to reflect the excitation and reference beams onto the first parabolic mirror and direct the reflection beam to the detection system from the second parabolic mirror. This rectangular mirror set is attached on a motorized translation stage (Sigma Koki, SGSP series) with the motion resolution of 40 nm per electronic driving pulse, which corresponds to 0.00005o per driving pulse on the incident angles. This resolution easily outperforms that, around 0.005o per driving pulse, of a high-end motorized rotation stage (Sigma Koki, SGSP-120YAW). The first parabolic mirror changes the incident parallel-axis beam onto the samples through a spherical prism made of SF11 for phase matching condition. The incident angle of the oblique beam is controlled by the location of the laser beam on the parabolic mirror.
    99. “Sugar Analysis-ICUMSA” edited by F. Schneider and published by the International Commission for Uniform Methods of Sugar Analysis (ICUMSA) (1979). (http://doclibrary.com/MSC167/PRM/ICUMSA Brix Table1933.PDF)
    100. D. M. Shotton, “Confocal scanning optical microscopy and its application for biological specimens,” J. Cell Sci. 94, 175 (1989).
    101. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
    102. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 11, 246 (2008).
    103. R. J. Kittel, C. Wichmann, T. M. Rasse, W. Fouquet, M. Schmidt, A. Schmid, D. A. Wagh, C. Pawlu, R. R. Kellner, K. I. Willig, S. W. Hell, E. Buchner, M. Heckmann, and S. J. Sigrist, “High-resolution thin-film device to sense texture by touch,” Science 312, 1501 (2006).
    104. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)” Nature Methods 3, 793 (2006).
    105. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
    106. H. Peng, “Bioimage informatics: a new area of engineering biology,” Bioinformatics 24, 1827 (2008).
    107. G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379, 328 (2004).
    108. S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron 25(5), 957 (2010).
    109. T. M. Chinowsky, M. S. Grow, K. S. Johnston, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22, 2208 (2007).
    110. H. J. Lee, H. S. Lee, H. S. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave regime,” J. Appl. Phys. 108, 014908 (2010).
    111. X. J. He, Y. Wang, J. M. Wang, and T. L. Gui, “Thin-film sensor based tip-shaped split ring resonator metamaterial for microwave application,” Microsyst. Technol. 16, 1735 (2010).
    112. X. J. He, L. Qiu, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “A Compact Thin-Film Sensor Based on Nested Split-Ring-Resonator (SRR) Metamaterials for Microwave Applications,” J. Infrared Milli. Terahz. Waves. 32, 902 (2011).
    113. Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18, 9561 (2010).
    114. O. K. Lee, Y. C. Ko, T. K. Kuo, S. H. Chou, H. J. Li, and W. M. Chen, “Fluvastatin and lovastatin but not pravastatin induce neuroglial differentiation in human mesenchymal stem cells.” J. Cell Biochem, 93, 917 (2004).
    115. K. D. Lee, T. K. Kuo, Whang-Peng J, Y. F. Chung, C. T. Lin, and S. H. Chou, “In vitro hepatic differentiation of human mesenchymal stem cells,” Hepatology. 40, 1275 (2004).
    116. Y. L. Chiang, C. H. Lin, M. Y. Yen, Y. D. Su, S. J. Chen, and H. F. Chen, “Innovative antimicrobial susceptibility testing method using surface plasmon resonance,” Biosens. Bioelectron. 24, 1905 (2009).
    117. C. T. Li, T. J. Yen, and H. F. Chen, “A generalized model of maximizing the sensitivity in intensity-interrogation surface plasmon resonance biosensors,” Opt. Express 17, 20771 (2009).
    118. A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” J. Biophys. 14, 439-453 (1974).
    119. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17, 15372 (2009).
    R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312 (2011).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE