簡易檢索 / 詳目顯示

研究生: 蔡馥亦
Tsai, Fu-Yi
論文名稱: 空孔與顆粒缺陷在矽晶圓對界面中行為之研究
指導教授: 胡塵滌
Hu, Chen-Ti
口試委員: 吳錫侃
楊聰仁
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 界面缺陷空孔缺陷顆粒缺陷矽晶圓對推壓力界面能
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由動態刀刃法觀察矽晶圓對中不同種類缺陷於界面之行為特性,探討晶圓對界面上之空孔缺陷及人工製作的顆粒缺陷與刀刃受力關係及差異,建立界面缺陷行為的可能機制,以及討論不同熱處理溫度與矽晶圓對上不同位置對晶圓對界面強度與局部接合強度之影響與關係。
    根據矽晶圓對之動態刀刃法分析結果,刀刃所承受之推壓力隨熱處理溫度與插刀時間增加而增加。當刀刃裂口接近未經熱處理晶圓對的空孔缺陷時,缺陷發生前進移動而非預期的與裂口快速連結,且空孔缺陷移動距離會受刀刃已運動距離長短影響,刀刃所承受之推壓力隨插刀的時間而增加,推測與氫鍵密度增加有關,而當空孔缺陷與裂口連結瞬間刀刃所承受之推壓力無明顯變化。至於熱處理後晶圓對的空孔缺陷及顆粒缺陷行為,乃如預期的與刀刃裂口快速連結,連結瞬間,因釋放晶圓之彎曲彈性能可觀察到刀刃承受之推壓力值明顯減少。


    第一章 前言 1 第二章 文獻回顧 3 2-1. 簡介晶圓接合 (Wafer Bonding) 3 2-2. 晶圓接合之歷史回顧 4 2-3. 晶圓接合之應用 5 2-3-1. 積體電路 (IC)之應用 5 2-3-2. 微機電系統 (MEMS)之應用 7 2-3-3. P-N junction 的應用 7 2-3-4. 異質接合之應用 8 2-3-5. 封裝保護作用 10 2-4. 晶圓接合強度分析 10 第三章 實驗程序 26 3-1. 晶圓表面清洗 26 3-2. 接合及熱處理步驟 27 3-3. 含人工顆粒(Man-made Particle Defects)之晶圓對製程 27 3-3-1. 人工顆粒(Man-made Particle Defects)製程 27 3-3-2. 接合及熱處理步驟 28 3-4. 實驗分析與儀器介紹 29 3-4-1. 紅外線照相術 29 3-4-2. 接合界面動態刀刃分析 30 3-4-3. 界面能測試 31 3-4-4. 晶圓表面分析 32 第四章 結果與討論 36 4 -1. 熱處理溫度對晶圓對接合強度的影響 36 4 -2. 不同位置接合強度的研究 40 4 -3. 空孔缺陷(Void Defect)的動態刀刃分析 41 4-4. 顆粒缺陷(Particle Defect)的動態刀刃分析 46 第五章 結論 82 參考文獻 85

    1. C.-Y. Su, S. Tsao, L.-Y. Huang and C.-T. Hu, "Distinguish Various Types of Defects in Bonded Wafer Pairs with the Dynamic Blade Insertion Method", Journal of The Electrochemical Society 157 (8), H792-H795 (2010).
    2. J. Haisma and G. A. C. M. Spierings, "Contact Bonding, Including Direct-Bonding in a Historical and Recent Context of Materials Science and Technology, Physics and Chemistry: Historical Review in a Broader Scope and Comparative Outlook", Materials Science and Engineering: R: Reports 37 (1-2), 1-60 (2002).
    3. Q.-Y. Tong and U. Gosele, Semiconductor Wafer Bonding: Science and Technology. (JOHN WILEY & SONS, INC., USA, 1999).
    4. R. G. Horn, "Surface Forces and Their Action in Ceramic Materials", Journal of the American Ceramic Society 73 (5), 1117-1135 (1990).
    5. K.-T. Wan, D. T. Smith and B. R. Lawn, "Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres", Journal of the American Ceramic Society 75 (3), 667-676 (1992).
    6. J. B. Lasky, S. R. Stiffler, F. R. White and J. R. Abernathey, presented at the Electron Devices Meeting, 1985 International, (1985).
    7. J. B. Lasky, "Wafer Bonding for Silicon-on-Insulator Technologies", Applied Physics Letters 48 (1), 78-80 (1986).
    8. M. Shimbo, K. Furukawa, K. Fukuda and K. Tanzawa, "Silicon-to-Silicon Direct Bonding Method", Journal of Applied Physics 60 (8), 2987-2989 (1986).
    9. Q. Y. Tong, X. L. Xu and H. Shen, "Diffusion and Oxide Viscous-Flow Mechanism in Sdb Process and Silicon-Wafer Rapid Thermal Bonding", Electronics Letters 26 (11), 697-699 (1990).
    10. K. Ahn, x, Y, R. Stengl, T. Y. Tan, U. Gosele and P. Smith, "Stability of Interfacial Oxide Layers During Silicon Wafer Bonding", Journal of Applied Physics 65 (2), 561-563 (1989).
    11. H. Takagi, R. Maeda, T. R. Chung and T. Suga, "Low-Temperature Direct Bonding of Silicon and Silicon Dioxide by the Surface Activation Method", Sensors and Actuators A: Physical 70 (1-2), 164-170 (1998).
    12. K.-W. S. James B. Kuo, Cmos Vlsi Engineering: Silicon-on-Insulator (Soi). (Kluwer Academic Publishers, 1998).
    13. J.-P. Colinge, Silicon-on-Insulator Technology: Materials to Vlsi. (Kluwer Academic Publishers, 1997).
    14. M. A. Schmidt, "Wafer-to-Wafer Bonding for Microstructure Formation", Proceedings of the IEEE 86 (8), 1575-1585 (1998).
    15. T. Suni, K. Henttinen, A. Lipsanen, J. Dekker, H. Luoto and M. Kulawski, "Wafer Scale Packaging of Mems by Using Plasma-Activated Wafer Bonding", Journal of The Electrochemical Society 153 (1), G78-G82 (2006).
    16. N. Keskitalo, S. Tiensuu and A. Hallén, "Characterization of Hydrophobic Bonded Silicon Wafers", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 186 (1-4), 66-70 (2002).
    17. T. R. Chung, L. Yang, N. Hosoda and T. Suga, "Room Temperature Gaas---Si and Inp---Si Wafer Direct Bonding by the Surface Activated Bonding Method", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 121 (1-4), 203-206 (1997).
    18. C. Taek Ryong, L. Yang, N. Hosoda, H. Takagi and T. Suga, "Wafer Direct Bonding of Compound Semiconductors and Silicon at Room Temperature by the Surface Activated Bonding Method", Applied Surface Science 117-118, 808-812 (1997).
    19. D. Pasquariello, M. Camacho, K. Hjort, L. Dózsa and B. Szentpáli, "Evaluation of Inp-to-Silicon Heterobonding", Materials Science and Engineering: B 80 (1-3), 134-137 (2001).
    20. V. Lehmann, K. Mitani, R. Stengl, T. Mii and U. Gosele, "Bubble-Free Wafer Bonding of Gaas and Inp on Silicon in a Microcleanroom", Jpn. J. Appl. Phys. Part 2 - Lett. 28 (12), L2141-L2143 (1989).
    21. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford and V. M. Robbins, "Very High-Efficiency Semiconductor Wafer-Bonded Transparent-Substrate (Alxga1-X)0.5in0.5p/Gap Light-Emitting Diodes", Applied Physics Letters 64 (21), 2839-2841 (1994).
    22. B. F. Levine, A. R. Hawkins, S. Hiu, B. J. Tseng, C. A. King, L. A. Gruezke, R. W. Johnson, D. R. Zolnowski and J. E. Bowers, "20 Ghz High Performance Planar Si/Ingaas P-I-N Photodetector", Applied Physics Letters 70 (18), 2449-2451 (1997).
    23. J. H. Wang, M. S. Jin, V. H. Ozguz and S. H. Lee, "N-Channel Metal-Oxide-Semiconductor Transistors Fabricated in a Silicon Film Bonded onto Sapphire", Applied Physics Letters 64 (6), 724-726 (1994).
    24. A. Murai, L. McCarthy, U. Mishra, S. P. DenBaars, C. Kruse, S. Figge and D. Hommel, "Wafer Bonding of Gan and Znsse for Optoelectronic Applications", Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. 43 (10A), L1275-L1277 (2004).
    25. Y. Tomita, M. Sugimoto and K. Eda, "Direct Bonding of Linbo3 Single Crystals for Optical Waveguides", Applied Physics Letters 66 (12), 1484-1485 (1995).
    26. K. Eda, M. Sugimoto and Y. Tomita, "Direct Heterobonding of Lithium Niobate onto Lithium Tantalate", Applied Physics Letters 66 (7), 827-829 (1995).
    27. M. Alexe, G. Kastner, D. Hesse and U. Gosele, "Ferroelectric-Semiconductor Heterostructures Obtained by Direct Wafer Bonding", Applied Physics Letters 70 (25), 3416-3418 (1997).
    28. Q.-Y. Tong, R. Gafiteanu and U. Gosele, "Reversible Silicon Wafer Bonding for Surface Protection: Water-Enhanced Debonding", Journal of The Electrochemical Society 139 (11), L101-L102 (1992).
    29. Ö. Vallin, K. Jonsson and U. Lindberg, "Adhesion Quantification Methods for Wafer Bonding", Materials Science and Engineering: R: Reports 50 (4-5), 109-165 (2005).
    30. W. P. Maszara, G. Goetz, A. Caviglia and J. B. McKitterick, "Bonding of Silicon Wafers for Silicon-on-Insulator", Journal of Applied Physics 64 (10), 4943-4950 (1988).
    31. T. Martini, J. Steinkirchner and U. Gosele, "The Crack Opening Method in Silicon Wafer Bonding", Journal of The Electrochemical Society 144 (1), 354-357 (1997).
    32. X. X. Zhang and J.-P. Raskin, "Investigation on the Uniformity of Surface Energy in Silicon Direct-Bonding Technique", Journal of The Electrochemical Society 151 (9), G568-G573 (2004).
    33. X. Zhang and J.-P. Raskin, "A Dynamic Study for Wafer-Level Bonding Strength Uniformity in Low-Temperature Wafer Bonding", Electrochemical and Solid-State Letters 8 (10), G268-G270 (2005).
    34. S. Mack, H. Baumann and U. Gösele, "Gas Development at the Interface of Directly Bonded Silicon Wafers: Investigation on Silicon-Based Pressure Sensors", Sensors and Actuators A: Physical 56 (3), 273-277 (1996).
    35. C. Ventosa, F. Rieutord, L. Libralesso, C. Morales, F. Fournel and H. Moriceau, "Hydrophilic Low-Temperature Direct Wafer Bonding", Journal of Applied Physics 104 (12), 123524 (2008).
    36. U. Gösele and Q.-Y. Tong, "Semiconductor Wafer Bonding", Annual Review of Materials Science 28 (1), 215-241 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE