簡易檢索 / 詳目顯示

研究生: 黃彥傑
Huang, Yan-Jie
論文名稱: 利用 3D 列印製備組件式設計之雙重濕潤性錐形陣列以提升集霧效率
Enhancing Fog Collection Efficiency with Assembly Design of 3D Printed, Dual-Wettability Conical Arrays
指導教授: 陳柏宇
Chen, Po-Yu
口試委員: 林宗宏
Lin, Zong-Hong
王致喨
Wang, Chih-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 117
中文關鍵詞: 3D列印捕霧集水系統表面改質
外文關鍵詞: 3D prining, fog collectinig, surface modification
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地球上可供人類直接使用的淡水資源僅佔全球總水量的0.26%。鑑於水資源的有限供應,從大氣中捕獲霧氣轉化為可用水資源的方法,在環境友善和永續發展方面具有極大的潛力。研究人員從仙人掌植物(Cactaceae)獨特的針狀葉結構中獲得靈感,開發了模仿這些設計的捕霧裝置。
    然而,許多現有方法耗時且涉及多個複雜的步驟。在我們的研究中,我們介紹了一種新穎的方法,用於製造模仿仙人掌針葉結構的多層次結構,具有雙重濕潤性表面,用於增強捕捉和收集霧氣的效率。我們的方法之所以出眾,是因為其簡單、快速、低成本且低耗能。通過利用光固化(SLA)3D列印設備並使用樹脂材料,我們成功地創造了一種新穎的仿生結構。透過實驗分析,我們展示了仿仙人掌結構在捕捉霧氣方面的優越性能。與平坦表面相比,我們的結構收集了顯著更多的霧氣,集水效率達到2.10 g/h,而平坦表面的集水效率僅為0.98 g/h。這些結果突顯了我們方法在利用捕捉霧氣轉化成水資源方面的成效。
    通過提供高效的霧氣收集方法,我們的研究有助於解決淡水短缺的迫切問題。隨著進一步的發展和應用,這些方法具有巨大的潛力,能夠減輕缺水危機並促進水資源的永續利用。為了進一步提高霧氣收集的性能,我們設計了一種創新的組件式設計,並結合聚乙二醇單甲基丙烯酸(Poly(ethylene glycol) methacrylate)高分子嫁接表面處理法,以得到雙重濕潤性表面。透過雷射共軛焦顯微鏡和掃描式電子顯微鏡對表面形貌和微觀結構特徵進行表面形貌分析。這種高效率且簡單製備的方法可進一步應用於提高霧氣收集性能,並在製造雙重濕潤性表面和微流體設備上得以應用。


    Freshwater resources available for direct human use constituted only 0.26% of the total water on Earth. Given the limited availability, capturing water vapor from the atmosphere held immense potential as an eco-friendly and sustainable solution. Researchers had drawn inspiration from the unique leaf structures of cactus plants (Cactaceae) to develop fog collectors that mimicked these designs. However, many of these existing methods were time-consuming and involved multiple complex steps. In our study, we introduced a novel approach for fabricating cactus-inspired multilevel structures with dual-wettability surfaces, designed specifically to efficiently capture and collect fog.
    Our method stood out due to its simplicity, speed, affordability, and low energy consumption. By utilizing Stereolithography Apparatus (SLA) 3D printing technology and resin materials, we successfully created these innovative structures. Through experimental analysis, we demonstrated the superior fog collection capabilities of our cactus-inspired structures. When comparing them with a flat substrate, our structures collected a significantly higher amount of fog, measuring 2.10 grams per hour compared to 0.98 grams per hour for the flat substrate. These results highlighted the effectiveness of our approach in harnessing fog as a valuable water resource. By offering a practical and efficient fog collection method, our research contributed to addressing the pressing issue of freshwater scarcity. With further development and implementation, such approaches held immense potential for alleviating the water crisis and promoting sustainable water management practices.
    To enhance fog harvesting performance, we employed an assembly design that incorporated Poly(ethylene glycol) methacrylate (PEGMA) polymer grafting to create a dual-wettability surface. The surface's morphology and microstructural features were analyzed using scanning laser confocal microscopy and Scanning Electron Microscope (SEM). This simple and effective method could be extended for utilization in fog harvesting, wettable surfaces, and microfluidic devices.

    Figure Caption--------------------------------------------I Table Caption---------------------------------------------IX Chapter 1. Introduction-----------------------------------1 Chapter 2. Literature Review------------------------------5 2.1 Surface Wettability-----------------------------------5 2.1.1 Water Contact Angle---------------------------------5 2.1.2 Classic Wetting Models------------------------------6 2.2 Fog Harvesting Behaviors in Nature--------------------11 2.2.1 Cactus Plant----------------------------------------11 2.2.2 Namib Desert Beetle---------------------------------15 2.3 Bioinspired Surfaces for Fog Collection---------------17 2.4 Fabrication of Hybrid-Wettability Surfaces------------23 2.4.1 Laser Etching Method--------------------------------23 2.4.2 Photolithography Method-----------------------------26 2.4.3 Spray Coating Method--------------------------------27 2.4.4 Polymer Grafting------------------------------------29 2.4.5 Mixing Method---------------------------------------31 2.5 Surface Modification----------------------------------37 2.5.1 Atmospheric Pressure Plasma Treatment---------------37 2.5.2 Polymer Grafting------------------------------------41 Chapter 3. Experimental Methods---------------------------42 3.1 Stereolithography 3D Printing Technique---------------44 3.2 Surface Modification----------------------------------49 3.2.1 Atmosphere Pressure Plasma Techniques---------------49 3.2.2 Preparation of Dual-Wettability Surfaces------------50 3.3 Characterization--------------------------------------54 3.3.1 Surface Topography----------------------------------54 3.3.2 Electron Spectroscopy for Chemical Analysis---------56 3.4 Static Water Contact Angle Measurement----------------58 3.5 Fog Collection Experiment-----------------------------59 Chapter 4. Results and Discussion-------------------------61 4.1 Characterization--------------------------------------61 4.1.1 Contact Angle Measurement---------------------------61 4.1.2 Electron Spectroscopy for Chemical Analysis---------62 4.1.3 SEM Analysis----------------------------------------67 4.2 Cactus-Inspired Conical Structures--------------------68 4.2.1 Surface Topography----------------------------------68 4.2.1 Comparative Analysis of Fog Collection Performance--71 4.3 Dual-Wettability Optimization-------------------------81 4.3.1 Surface Topography----------------------------------81 4.3.2 Fog Collection Performance--------------------------83 4.4 Additional Structures---------------------------------91 4.4.1 Frustum Structure-----------------------------------91 4.4.2 Rounded-Conical Structure---------------------------94 4.4.3 Dendritic Structure---------------------------------97 4.5 Comparison with Recent Studies------------------------100 Chapter 5. Conclusions------------------------------------104 Chapter 6. Future Work------------------------------------109 6.1.1 Design Capacity Patterns for Enhancing Fog Collection--109 6.1.2 Material Selection of Additive Manufacturing-----------110 References------------------------------------------------111

    [1] D. Seckler, R. Barker, and U. Amarasinghe, "Water scarcity in the twenty-first century," International Journal of Water Resources Development, vol. 15, no. 1-2, pp. 29-42, 1999.
    [2] Tzanakakis, V. A., Paranychianakis, N. V., & Angelakis, A. N. (2020). Water supply and water scarcity. Water, 12(9), 2347.
    [3] McLennan, M. (2021). The Global Risks Report 2021 16th Edition. Cologny, Switzerland: World Economic Forum.
    [4] Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., ... & Oki, T. (2017). Water scarcity assessments in the past, present, and future. Earth's future, 5(6), 545-559.
    [5] Zhu, H., & Guo, Z. (2016). Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles. Chemical Communications, 52(41), 6809-6812.
    [6] Yin, K., Du, H., Dong, X., Wang, C., Duan, J. A., & He, J. (2017). A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Nanoscale, 9(38), 14620-14626.
    [7] Kostal, E., Stroj, S., Kasemann, S., Matylitsky, V., & Domke, M. (2018). Fabrication of biomimetic fog-collecting superhydrophilic–superhydrophobic surface micropatterns using femtosecond lasers. Langmuir, 34(9), 2933-2941.
    [8] Chen, D., Li, J., Zhao, J., Guo, J., Zhang, S., Sherazi, T. A., & Li, S. (2018). Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. Journal of colloid and interface science, 530, 274-281.
    [9] Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., & Jiang, L. (2012). A multi-structural and multi-functional integrated fog collection system in cactus. Nature communications, 3(1), 1247.
    [10] Andrews, H. G., Eccles, E. A., Schofield, W. C. E., & Badyal, J. P. S. (2011). Three-dimensional hierarchical structures for fog harvesting. Langmuir, 27(7), 3798-3802.
    [11] Cao, M., Ju, J., Li, K., Dou, S., Liu, K., & Jiang, L. (2014). Facile and large‐scale fabrication of a cactus‐inspired continuous fog collector. Advanced Functional Materials, 24(21), 3235-3240.
    [12] Yu, Z., Yun, F. F., Wang, Y., Yao, L., Dou, S., Liu, K., ... & Wang, X. (2017). Desert beetle‐inspired superwettable patterned surfaces for water harvesting. Small, 13(36), 1701403.
    [13] Park, K. C., Chhatre, S. S., Srinivasan, S., Cohen, R. E., & McKinley, G. H. (2013). Optimal design of permeable fiber network structures for fog harvesting. Langmuir, 29(43), 13269-13277.
    [14] Ju, J., Xiao, K., Yao, X., Bai, H., & Jiang, L. (2013). Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Advanced Materials, 25(41), 5937-5942.
    [15] Roth-Nebelsick, A., Ebner, M., Miranda, T., Gottschalk, V., Voigt, D., Gorb, S., ... & Konrad, W. (2012). Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. Journal of the Royal Society interface, 9(73), 1965-1974.
    [16] Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog-water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52-62.
    [17] Jiang, Y., Savarirayan, S., Yao, Y., & Park, K. C. (2019). Fog collection on a superhydrophilic wire. Applied Physics Letters, 114(8).
    [18] Lovass, P., Branicki, M., Tóth, R., Braun, A., Suzuno, K., Ueyama, D., & Lagzi, I. (2015). Maze solving using temperature-induced Marangoni flow. Rsc Advances, 5(60), 48563-48568.
    [19] Sanchez, S., Solovev, A. A., Harazim, S. M., & Schmidt, O. G. (2011). Microbots swimming in the flowing streams of microfluidic channels. Journal of the American Chemical Society, 133(4), 701-703.
    [20] Eifert, A., Paulssen, D., Varanakkottu, S. N., Baier, T., & Hardt, S. (2014). Simple fabrication of robust water‐repellent surfaces with low contact‐angle hysteresis based on impregnation. Advanced Materials Interfaces, 1(3), 1300138.
    [21] Asmatulu, R., Khan, W. S., Reddy, R. J., & Ceylan, M. (2015). Synthesis and analysis of injection‐molded nanocomposites of recycled high‐density polyethylene incorporated with graphene nanoflakes. Polymer Composites, 36(9), 1565-1573.
    [22] Yue, H., Zeng, Q., Huang, J., Guo, Z., & Liu, W. (2022). Fog collection behavior of bionic surface and large fog collector: A review. Advances in Colloid and Interface Science, 300, 102583.
    [23] Huhtamäki, T., Tian, X., Korhonen, J. T., & Ras, R. H. (2018). Surface-wetting characterization using contact-angle measurements. Nature protocols, 13(7), 1521-1538.
    [24] Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials today, 18(5), 273-285.
    [25] Young, T. (1805). III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London(95), 65-87.
    [26] Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988-994.
    [27] Cassie, A., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday society, 40, 546-551.
    [28] Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials today, 18(5), 273-285.
    [29] Zhang, S., Huang, J., Chen, Z., & Lai, Y. (2017). Bioinspired special wettability surfaces: from fundamental research to water harvesting applications. Small, 13(3), 1602992.
    [30] Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F. Q., Zhao, Y., ... & Jiang, L. (2010). Directional water collection on wetted spider silk. Nature, 463(7281), 640-643.
    [31] Furmidge, C. (1962). Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. Journal of colloid science, 17(4), 309-324.
    [32] Lorenceau, E., & Quéré, D. (2004). Drops on a conical wire. Journal of Fluid Mechanics, 510, 29-45.
    [33] Parker, A. R., & Lawrence, C. R. (2001). Water capture by a desert beetle. Nature, 414(6859), 33-34.
    [34] Shi, Y., Ilic, O., Atwater, H. A., & Greer, J. R. (2021). All-day fresh water harvesting by microstructured hydrogel membranes. Nature communications, 12(1), 2797.
    [35] Feng, R., Song, F., Xu, C., Wang, X.-L., & Wang, Y.-Z. (2021). A quadruple-biomimetic surface for spontaneous and efficient fog harvesting. Chemical Engineering Journal, 422, 130119.
    [36] Zhao, F., Zhou, X., Shi, Y., Qian, X., Alexander, M., Zhao, X., ... & Yu, G. (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature nanotechnology, 13(6), 489-495.
    [37] Dai, X., Sun, N., Nielsen, S. O., Stogin, B. B., Wang, J., Yang, S., & Wong, T. S. (2018). Hydrophilic directional slippery rough surfaces for water harvesting. Science advances, 4(3), eaaq0919.
    [38] Bai, H., Wang, L., Ju, J., Sun, R., Zheng, Y., & Jiang, L. (2014). Efficient water collection on integrative bioinspired surfaces with star‐shaped wettability patterns. Advanced Materials, 26(29), 5025-5030.
    [39] Feng, R., Xu, C., Song, F., Wang, F., Wang, X. L., & Wang, Y. Z. (2020). A bioinspired slippery surface with stable lubricant impregnation for efficient water harvesting. ACS applied materials & interfaces, 12(10), 12373-12381.
    [40] Li, D., Huang, J., Han, G., & Guo, Z. (2018). A facile approach to achieve bioinspired PDMS@ Fe 3 O 4 fabric with switchable wettability for liquid transport and water collection. Journal of Materials Chemistry A, 6(45), 22741-22748.
    [41] Gurera, D., & Bhushan, B. (2019). Optimization of bioinspired conical surfaces for water collection from fog. Journal of colloid and interface science, 551, 26-38.
    [42] Wang, Y., Zhang, L., Wu, J., Hedhili, M. N., & Wang, P. (2015). A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 3(37), 18963-18969.
    [43] Chou, H. T., Chen, Y. C., Lee, C. Y., Chang, H. Y., & Tai, N. H. (2017). Biomimetic structure of carbon fiber cloth grafted with poly (N-isopropylacrylamide) for water collection and smart gates. RSC advances, 7(72), 45799-45806.
    [44] Knapczyk-Korczak, J., Szewczyk, P. K., Ura, D. P., Bailey, R. J., Bilotti, E., & Stachewicz, U. (2020). Improving water harvesting efficiency of fog collectors with electrospun random and aligned Polyvinylidene fluoride (PVDF) fibers. Sustainable materials and technologies, 25, e00191.
    [45] Xu, C., Feng, R., Song, F., Wang, X. L., & Wang, Y. Z. (2018). Desert beetle-inspired superhydrophilic/superhydrophobic patterned cellulose film with efficient water collection and antibacterial performance. ACS Sustainable Chemistry & Engineering, 6(11), 14679-14684.
    [46] Jing, X., & Guo, Z. (2019). Durable lubricant-impregnated surfaces for water collection under extremely severe working conditions. ACS applied materials & interfaces, 11(39), 35949-35958.
    [47] Liu, H., Xie, W. Y., Song, F., Wang, X. L., & Wang, Y. Z. (2019). Constructing hierarchically hydrophilic/superhydrophobic ZIF-8 pattern on soy protein towards a biomimetic efficient water harvesting material. Chemical Engineering Journal, 369, 1040-1048.
    [48] Cao, M., Xiao, J., Yu, C., Li, K., & Jiang, L. (2015). Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection. Small, 11(34), 4379-4384.
    [49] Yu, Z., Zhang, H., Huang, J., Li, S., Zhang, S., Cheng, Y., ... & Lai, Y. (2021). Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting. Journal of Materials Science & Technology, 61, 85-92.
    [50] Fan, Y., Li, S., Wei, D., Hou, J., Fang, Z., Han, Z., & Liu, Y. (2022). Flexible bioinspired PDMS-paper based surface with hybrid wettability for droplet collection and detection. Progress in Organic Coatings, 170, 106988.
    [51] Wang, Y., Zhang, L., Wu, J., Hedhili, M. N., & Wang, P. (2015). A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 3(37), 18963-18969.
    [52] Zhou, W. L., Wu, T., Du, Y., Zhang, X. H., Chen, X. C., Li, J. B., ... & Qu, J. P. (2023). Efficient fabrication of desert beetle-inspired micro/nano-structures on polypropylene/graphene surface with hybrid wettability, chemical tolerance, and passive anti-icing for quantitative fog harvesting. Chemical Engineering Journal, 453, 139784.
    [53] Sladek, R. E. J., & Stoffels, E. (2005). Deactivation of Escherichia coli by the plasma needle. Journal of Physics D: Applied Physics, 38(11), 1716.
    [54] Lommatzsch, U., & Ihde, J. (2009). Plasma polymerization of HMDSO with an atmospheric pressure plasma jet for corrosion protection of aluminum and low‐adhesion surfaces. Plasma Processes and Polymers, 6(10), 642-648.
    [55] Podgorski, L., Chevet, B., Onic, L., & Merlin, A. (2000). Modification of wood wettability by plasma and corona treatments. International journal of adhesion and adhesives, 20(2), 103-111.
    [56] Pitt, W. G. (1989). Fabrication of a continuous wettability gradient by radio frequency plasma discharge. Journal of colloid and interface science, 133(1), 223-227.
    [57] Chen, F. F. (2012). Introduction to plasma physics. Springer Science & Business Media.
    [58] Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9(4), 441.
    [59] Morozov, A. I. (2012). Introduction to plasma dynamics. CRC Press.
    [60] Thompson, W. B. (2013). An introduction to plasma physics. Elsevier.
    [61] Eliasson, B., & Kogelschatz, U. (1991). Nonequilibrium volume plasma chemical processing. IEEE transactions on plasma science, 19(6), 1063-1077.
    [62] Herrmann, H. W., Henins, I., Park, J., & Selwyn, G. S. (1999). Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Physics of plasmas, 6(5), 2284-2289.
    [63] Marcus, R. K., & Broekaert, J. A. (Eds.). (2003). Glow discharge plasmas in analytical spectroscopy (pp. 293-315). Chichester: Wiley.
    [64] Yu, H., Zhang, Y., Wong, A., De Rosa, I. M., Chueh, H. S., Grigoriev, M., ... & Hicks, R. F. (2014). Atmospheric and Vacuum Plasma Treatments of Polymer Surfaces for Enhanced Adhesion in Microelectronics Packaging. Adhesion in Microelectronics, 137-172.
    [65] Fritz, J. L., & Owen, M. J. (1995). Hydrophobic recovery of plasma-treated polydimethylsiloxane. The Journal of adhesion, 54(1-4), 33-45.
    [66] Xie, X., Gengenbach, T. R., & Griesser, H. J. (1992). Changes in wettability with time of plasma-modified perfluorinated polymers. Journal of adhesion science and technology, 6(12), 1411-1431.
    [67] Zhang, J., Xu, L., Yu, X., & Liu, X. (2002). Influence of aging on the morphology and wettability of polytetrafluoroethylene implanted by high-fluence carbon ion. Materials Letters, 56(4), 410-417.
    [68] Maheshwari, N., Kottantharayil, A., Kumar, M., & Mukherji, S. (2010). Long term hydrophilic coating on poly (dimethylsiloxane) substrates for microfluidic applications. Applied Surface Science, 257(2), 451-457.
    [69] Chan, C. M., Ko, T. M., & Hiraoka, H. (1996). Polymer surface modification by plasmas and photons. Surface science reports, 24(1-2), 1-54.
    [70] Arefi-Khonsari, F., Kurdi, J., Tatoulian, M., & Amouroux, J. (2001). On plasma processing of polymers and the stability of the surface properties for enhanced adhesion to metals. Surface and coatings Technology, 142, 437-448.
    [71] Dayss, E., Leps, G., & Meinhardt, J. (1999). Surface modification for improved adhesion of a polymer–metal compound. Surface and coatings technology, 116, 986-990.
    [72] Liston, E. M., Martinu, L., & Wertheimer, M. R. (1993). Plasma surface modification of polymers for improved adhesion: a critical review. Journal of adhesion science and technology, 7(10), 1091-1127.
    [73] Wu, Y., Yang, J., Lin, Y., & Xu, J. (2019). Synthesis of samarium-based metal organic compound nanoparticles with polychromatic-photoluminescence for bio-tissue fluorescence imaging. Molecules, 24(20), 3657.
    [74] NIST X-ray Photoelectron Spectroscopy Database, from : https://srdata.nist.gov/xps/Default.aspx
    [75] Stadler, V., Kirmse, R., Beyer, M., Breitling, F., Ludwig, T., & Bischoff, F. R. (2008). PEGMA/MMA copolymer graftings: generation, protein resistance, and a hydrophobic domain. Langmuir, 24(15), 8151-8157.
    [76] Rjeb, M., Labzour, A., Rjeb, A., Sayouri, S., El Idrissi, M. C., Massey, S., ... & Roy, D. (2004). Contribution to the study by X-ray photoelectron spectroscopy of the natural aging of the polypropylene. Moroccan Journal of Condensed Matter, 5(2).
    [77] Moazzam, P., Tavassoli, H., Razmjou, A., Warkiani, M. E., & Asadnia, M. (2018). Mist harvesting using bioinspired polydopamine coating and microfabrication technology. Desalination, 429, 111-118.
    [78] Zhang, L., Wu, J., Hedhili, M. N., Yang, X., & Wang, P. (2015). Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces. Journal of Materials Chemistry A, 3(6), 2844-2852.
    [79] 林佳宜. (2021). 利用 3D 列印和大氣電漿製備沙漠甲蟲啟發之捕霧複合濕潤性表面 (Doctoral dissertation, 國立清華大學).
    [80] Chen, D., Li, J., Zhao, J., Guo, J., Zhang, S., Sherazi, T. A., & Li, S. (2018). Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. Journal of colloid and interface science, 530, 274-281.
    [81] Rong, W., Zhang, H., Mao, Z., Chen, L., & Liu, X. (2021). Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, 126712.
    [82] Zhong, L., Feng, J., & Guo, Z. (2019). An alternating nanoscale (hydrophilic–hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. Journal of Materials Chemistry A, 7(14), 8405-8413.

    QR CODE