簡易檢索 / 詳目顯示

研究生: 林逸華
Lin, Yi-Hua
論文名稱: Determination of Equilibrium Melting Temperature and Fold Surface Energy for Poly(L-lactic acid) via Simultaneous Small/Wide-angle X-Ray Scattering and Differential Scanning Calorimetry
指導教授: 蘇安仲
Su, An-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 34
中文關鍵詞: 左旋聚乳酸平衡熔點摺疊表面能晶板厚度小角度散射
外文關鍵詞: poly(L-lactic acid), equilibrium melting temperature, fold surface energy, Gibbs-Thomson melting line, Simultaneous Small/Wide-angle X-Ray Scattering, lamellar thickness
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ABSTRACT

    By means of synchrotron-based and simultaneous small/wide-angle X-ray scattering and differential scanning calorimetry, we adopted our previously developed method to determine the equilibrium melting temperature (Tmº) and the fold surface energy (σe) of poly(L-lactic acid)(PLLA).With gradually increased temperature, the crystalline lamellae approached solid-melt equilibrium for reliable construction of the Gibbs-Thomson (GT) melting line. In addition, the
    lamellar thicknesses were more confidently determined by the arrayed-disks model fitting instead of the previous method of one-dimensional correlation function or Kratky-Porod approximation. From the GT line thus determined, we have obtained Tmº ≈ 199 ºC and σe ≈ 46 mJ m−2. Comparison of the present Tmº and σe values with those previously reported using different approaches are critically
    made in terms of consistency between the experimental design and inherent assumptions within each theoretical model. We proposed that the fold surface energy depends on intricacies in the fold structure, which are kinetically determined, generally path-dependent, and subjected to
    reorganization before reaching the equilibrium melting line. This explains the wide-range of reported σe values for a given polymer from nucleation, growth, or melting studies and the poor correlation to chain rigidity among different polymers.


    TABLE OF CONTENTS ACKNOWLEDGMENT ..........................................I ABSTRACT ...............................................II LIST OF FIGURES .......................................IV LIST OF TABLES ........................................ VI 1. Background ...........................................1 1.1. Polymorphism .....................................1 1.2. Equilibrium melting temperature of poly(L-lactic acid) ............................................1 1.3. Fold surface energy of poly(L-lactic acid) .......2 1.4. Objective and approach ...........................2 2. Experimental Details .................................4 2.1. Specimen preparation .............................4 2.2. Instruments ......................................4 2.3. Data Analysis ....................................5 3. Results and Discussion ...............................7 3.1. The anomalous low-q scattering ...................7 3.2. Melting behavior .................................7 3.3. Equilibrium melting point and fold surface energy.8 4. Conclusion and Recommendation .......................22 4.1. Conclusion .....................................22 4.2. Recommendation .................................22 REFERENCES..............................................23 APPENDIX ...............................................24

    REFERENCES

    1. De Santis, P.; Kovacs, A. J. Biopolymer 1968, 6, 299.
    2. Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.;
    Okihara, T.; Lotz, B. Polymer 2000, 41, 8921.
    3. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.;
    Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909.
    4. Zhang, J. M.; Duan, Y.; Sato, H.; Tsuji,H.; Noda, I.;
    Yan, S.; Ozaki, Y. Macromolecules 2005, 38, 8012.
    5. Kalb, B.; Pennings, A. J. Polymer 1980, 21, 607.
    6. Tsuji, H; Ikada, Y. Polymer 1995, 36, 14.
    7. Lai, W.-C.; Liau, W.-B.; Lin, T.-T. Lin Polymer 2004,
    45, 3073.
    8. Nijenhuis, A. J.; Pennings A.J. Polymer 1996, 37,5849.
    9. Di Lorenzo, M. L. J. Appl. Polym. Sci. 2006, 100,3145.
    10. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J.
    Macromolecules 2008, 41, 1352.
    11. Vasanthakumari, R.; Pennings, A.J. Polymer 1983, 24,
    175.
    12. Abe, H.; Kikkawa,Y.; Inoue,Y; Doi, Y. Biomacromolecules
    2001, 2, 1007.
    13. He, Y; Fan, Z; Hu, Y; Wu, T; Wei, J; Li, S. European
    Polymer Journal 2007, 43, 4431.
    14. Strobl, G.; Cho, T.-Y. Polymer 2006, 47, 1036.
    15. Su, C. H.; Jeng, U.; Chen, S. H.; Cheng, C. Y.; Lee, J.
    J.; Lai, Y. H.; Su, W. C.; Tsai, J. C.; Su, A. C.
    Macromolecules 2009, 42, 4200.
    16. Marand, H.; Xu, J.; Srinivas, S. Macromolecules 1998,
    31, 8219.
    17. Baration, S.; Hall, E. S.; Lin, J. S.; Xu, R.; Runt, J.
    Macromolecules 2001, 34, 4857.
    18. Hocquent, S.; Dosiere, M.; Thierry, A.; Loz, B.; Koch,
    M. H. J.; Dubreuil, N.; Ivanov, D. A. Macromolecules
    2003, 36, 8376.
    19. Schmidtke, J.; Strobl, G.; Thurn-Albrecht, T.
    Macromolecules 1997, 30, 5804.
    20. Fischer, E. W.; Sterzel, H.J.; Wegner, G. Colloid
    Polym. Sci. 1973, 251, 980.
    21. Okhiara, T.; Tsuji, M.; Kawaguchi, K.; Katayama, K.;
    Tsuji, H.; Hyon, S.-H ; Ikada, Y. J. Macromol. Sci.
    1991, B30, 199.
    22. Cartier, L.; Okihara, T.; Lotz, B. Macromolecules 1997,
    30, 6313.
    23. Brizzolara, D.; Cantow, H.J.; Diederichs, K.; Keller,
    E; Domb A. J.; Macromolecules 1996, 29, 191.
    24. Aleman, C.; Lotz, B.; Puiggali B. J. Macromolecules
    2001, 34, 4795.
    25. Sasaki, S.; Asakura T. Macromolecules 2003, 36, 8385.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE