簡易檢索 / 詳目顯示

研究生: 林禹真
Lin, Yu-Chen
論文名稱: 探究式教學是否提升台灣中學生科學表現? PISA 2015 的實證分析
Does Inquiry-Based Teaching Really Improve Science Achievement of Taiwanese Pupils? Evidence from PISA 2015
指導教授: 林世昌
Lin, Eric S.
口試委員: 吳世英
Wu, Shih-Ying
余朝恩
Yu, Chao-En
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 公共政策與管理
Master Program of Public Policy and Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 53
中文關鍵詞: PISA中學生科學成就探究式教學合作解決問題能力
外文關鍵詞: PISA 2015, Science Achievement, Inquiry-Based Teaching, Collaborative Problem Solving
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PISA 是一項廣為國際重視的大型國際性學生能力評量計劃,每三年舉行一次,施測對象是 15 歲的中學生,內容輪流以「閱讀」、「數學」與「科學」三種能力為年度測驗主軸,各國教育政策決策當局經常依靠 PISA 測驗資料的分析結果作為規劃政策的依據。PISA 2015 的主軸是「科學」,其中「探究式教學」(Inquiry-based teaching, IBT) 是該年度測驗的特有指標, IBT 教學指教師透過講解引導或給予討論實作等方式,引發學生透過發想、探索、實驗、辯證等活動主動探究知識的教學方法。本研究以 PISA 2015 資料庫台灣區資料,採用 REPEST 迴歸分析 IBT 與學生 PISA 科學成績的關係。

    我們的實證結果發現 IBT 與學生科學成績呈現曲線關係,其中低頻率的 IBT 活動對學生科學成績有正向顯著影響,而高頻率的 IBT 活動對學生科學成績有負向顯著影響。本研究亦自創三種 IBT 類別變數,分別是解釋型 IBT 、實驗型 IBT 以及辨證型 IBT,我們的迴歸估計發現對台灣學生而言,解釋型的 IBT 教學活動正向顯著增加學生科學成績及促進學生科學學習的興趣與動機,但實驗型 IBT 及辨證型 IBT 則對學生科學成績及學習動機為負向影響。最後我們使用 PISA 2015 附加的合作解決問題能力素養 (Collaborative Problem Solving, CPS) 測驗資料,分析 CPS 能力跟 IBT 與學生科學成績的關係,結果顯示 CPS 正向顯著提升學生科學成績,並可能減少實驗型 IBT 對科學成績的負向影響。


    PISA is a large-scale international student's ability assessment coordinated by OECD and repeated every three-year-cycle time. The test aims to evaluate worldwide of 15-year-old students to test their reading, mathematics and science knowledge. In addition, it contains many valuable scales obtained from questionnaires of students, schools and parents. Among them, the ``Inquiry-based teaching (IBT)'' is an important indicator of PISA 2015. IBT refers to teachers' guidance through giving explanation and inspiration to trigger students to think, investigate, experiment, draw conclusion and debate. The relationship between IBT and students' science achievement is the central topic of many studies.

    Our paper uses PISA 2015 database in Taiwan to explore the relationship between IBT and the student's PISA scientific performance with REPEST regression. Our empirical results show that low-frequency IBT activities have a significant positive impact on students' scientific performance, and high frequency IBT activities have a significant negative impact on students' scientific performance. In addition, we construct three IBT category variables -- ``interpretive IBT'', ``experimental IBT'', and ``dialectical IBT''. For Taiwan students, interpretive IBT activities can significantly increase students' scientific performance and promote students' scientific learning interest and motivation, but experimental IBT and dialectical IBT have a negative impact on students' scientific performance and learning motivation. Finally, we use the Collaborative Problem Solving (CPS) test data to analyze the relationship between CPS ability, IBT and students' scientific performance. We find that CPS is significantly improving students' scientific performance and reducing negative impact from experimental IBT on scientific performance. Several educational policy implications are drawn from our empirical findings.

    中文摘要………………………………………………………………………………………………………………………………………………2 英文摘要………………………………………………………………………………………………………………………………………………3 誌謝………………………………………………………………………………………………………………………………………………………4 目錄………………………………………………………………………………………………………………………………………………………5 1 緒論…………………………………………………………………………………………………………………………………………………9 2 文獻回顧………………………………………………………………………………………………………………………………………11 2.1 以實驗/準實驗方式分析 IBT 與科學成就關係之研究……………………………………11 2.2 以大型國際測驗分析 IBT 與科學成就關係之研究……………………………………………13 2.3 PISA 資料庫內其他指標對科學成績的影響…………………………………………………………15 2.4 合作解決問題能力與科學成績………………………………………………………………………………………16 3 變數說明及敘述統計………………………………………………………………………………………………………………17 3.1 資料庫及主要變數說明……………………………………………………………………………………………………17 3.2 敘述統計及相關係數矩陣………………………………………………………………………………………………18 4 計量模型設定……………………………………………………………………………………………………………………………19 4.1 IBT 對台灣中學生科學成就的影響…………………………………………………………………………19 4.2 IBT 分類別活動及 CPS 對台灣中學生科學成就的影響………………………………20 4.3 IBT 活動對科學學習傾向的影響………………………………………………………………………………22 5 實證結果與討論………………………………………………………………………………………………………………………22 5.1 IBT 對台灣中學生科學成就的影響…………………………………………………………………………22 5.2 IBT 分類別活動及 CPS 對台灣中學生科學成就的影響………………………………24 5.3 IBT 對科學學習特性的影響…………………………………………………………………………………………25 6 結論與研究限制…………………………………………………………………………………………………………………………26 參考文獻……………………………………………………………………………………………………………………………………………29 A 附錄…………………………………………………………………………………………………………………………………………………33 A.1 PISA 2015 測驗架構………………………………………………………………………………………………………33 A.2 探索式教學 (IBTEACH) 指標簡介……………………………………………………………………………34 A.3 擬真值 (Plausible Values) 簡介…………………………………………………………………………38 A.4 合作式問題解決能力 (Collaborative Problem Solving) 簡介…………39

    [1] 張俊彥、翁玉華 (2000):“我國高一學生的問題解決能力與其科學過程技能之相關性研究,”《科學教育學刊》, 8, 35-36。
    [2] 黃子瓔 (2010):“從 3R 到 4C: 淺談 21 世紀能力的發展與趨勢,”《數位典藏與學習電子報》 請參見 http://newsletter.teldap.tw/news/InsightReportContent.php?nid= 4112&lid=466。
    [3] 李欣樺 (2011):“合作學習融入問題解決之數位遊戲對國小學生自然科學合作學習能力及學習成就之影響,” 國立台北教育大學自然科教育學系學位論文。
    [4] 余曉清、林煥祥 (2017):《PISA 2015 台灣學生的表現》, 新北市: 心理出版社。
    [5] 郭伯臣、曾建銘、吳慧珉 (2012):《大型標準化測驗建置流程應用於 TASA 之研究》, 台北: 國家教育研究院籌備處。
    [6] 彭郁翔 (2018):“不同電腦模擬模式對於合作科學問題解決之影響: 以眼動進行分析 (The effects of different computer simulations’ mode on collaborative science problem solving: An eye-tracking analysis), ”請參見 http://ir.lib.ncu.edu.tw/handle/987654321/77704。
    [7] Amaral, Olga and Garrison, Leslie (2013): “Helping English learners increase achievement through inquiry-based science instruction, ”Bilingual Research Journal: The Journal of the National Association for Bilingual Education, 26(2). 213-239.
    [8] Areepattamannil, Shaljan (2012), “Effects of inquiry-based science instruction on science achievement and interest in science: evidence from Qatar,” Journal of Educational Research, 105, 134-146.
    [9] Atilla, ÇiMER (2007), “Effective teaching in science: A review of literature,” Journal of Turkish Science Education, 4(1), 20-44.
    [10] Cairns, Dean (2019), “Investigating the relationship between instructional practices and science achievement in an inquiry-based learning environment,” International Journal of Science Education, 41(15), 2113-2135.
    [11] Cairns, Dean and Areepattamannil, Shaljan (2019), “Exploring the relations of inquiry-based teaching to science achievement and dispositions in 54 countries,” Research in Science Education, 49, 1-23.
    [12] Chi, Shaohui and Liu, Xiufeng and Wang, Zuhao and Han, Seong (2018), “Moderation of the effects of scientific inquiry activities on low ses students’ pisa 2015 science achievement by school teacher support and disciplinary climate in science classroom across gender,” International Journal of Science Education, 40(11), 1284-1304.
    [13] France17_KeslairOECD(2017), “PowerPoint: PISA (and PIAAC) Data analysis using STATA.” July 2017, OECD.
    [14] Gee, Kevin and Wong, Kenneth (2012), “A cross national examination of inquiry and its relationship to student performance in science: Evidence from the program for international student assessment PISA 2006,” International Journal of Educational Research, 53, 303-318.
    [15] Geier, Robert and Blumenfeld, Phyllis and Marx, Ronald and Krajcik, Joseph and Fishman, Barry and Soloway, Elliot and Chambers, Juanita (2008), “Standardized test outcomes for students engaged in inquiry-based science curricula in the context of urban reform,” Journal of Research in Science Teaching, 45(8), 922–939.
    [16] Hong, Zuway-R and Lin, Huann-Shyang and Lawrenz, Frances (2012), “Effects of an integrated science and societal implication intervention on promoting adolescents’ positive thinking and emotional perceptions in learning science,” International Journal of Science Education, 34(3), 329-352.
    [17] Hwang, Jihyun and Choi, Kyong and Bae, Yejun and Shin, Dong (2018), “Do teachers’ instructional practices moderate equity in mathematical and scientific literacy?: an investigation of the PISA 2012 and 2015,” International Journal of Science and Mathematics Education, 16, 25-45.
    [18] Jansen, Malte and Scherer, Ronny and Schroeders, Ulrich (2015), “Students’ self concept and self-efficacy in the sciences: Differential relations to antecedents and educational outcomes,” Contemporary Educational Psychology, 41, 13-24.
    [19] Jerrim, John and Oliver, Mary and Sims, Sam (2019), “The relationship between inquiry-based teaching and students’ achievement. New evidence from a longitudinal PISA study in england,” Learning and Instruction, 61, 35-44.
    [20] Lau, Kwok-Chi and Lam, Terence (2017), “Instructional practices and science performance of 10 top-performing regions in PISA 2015,” International Journal of Science Education, 39, 2128-2149.
    [21] Marshall, Jeff and Smart, Julie and Alston, Daniel (2016), “Inquiry-based instruction: A possible solution to improving student learning of both science concepts and scientific practices,” International Journal of Science and Mathematics Education, 777-796.
    [22] Mcconney, Andrew and Oliver, Mary and Woods-McConney, Amanda and Schibeci, Renato and Maor, Dorit (2014), “Inquiry, engagement, and literacy in science: A retrospective, cross-national analysis using PISA 2006,” Science Education, 98(6), 963-980.
    [23] Minner, Daphne and Levy, Abigail and Century, Jeanne (2010), “Inquiry-based science instruction what is it and does it matter? results from a research synthesis years 1984 to 2002,” Journal of Research in Science Teaching, 47, 474-496.
    [24] Mupira, Pio and Ramnarain, Umesh (2018), “The effect of inquiry-based learning on the achievement goal-orientation of grade 10 physical sciences learners at township schools in south africa,” Journal of Research in Science Teaching, 55, 810-825.
    [25] OECD (2013). “The PISA 2003 assessment framework: mathematics, reading, science and problem solving knowledge and skills.” Paris: OECD Publishing.
    [26] OECD (2017). “PISA 2015 technical report (CH 16): scaling procedures and construct validation of context questionnaire data.” Paris: OECD Publishing.
    [27] OECD (2017a). “PISA 2015 collaborative problem-solving framework,” Paris: OECD Publishing.
    [28] Palincsar, Annemarie and Anderson, Charles and David, Yvonne (1993) “Pursuing scientific literacy in the middle grades through collaborative problem solving,” The Elementary School Journal, 93(5), 643-658.
    [29] Stohr-Hunt, Patricia (1996), “An analysis of frequency of hands-on experience and science achievement,” Journal of Research in Science Teaching, 33(1), 101-109.
    [30] Teig, Nani and Scherer, Ronny and Nilsen, Trude (2018), “More isn’t always better: The curvilinear relationship between inquiry-based teaching and student achievement in science,” Learning and Instruction, 56, 20-29.
    [31] Valente, Maria Odete and Fonseca, Jesuina and Conboy, Joseph (2011), “Inquiry science teaching in Portugal and some other countries as measured by PISA 2006,” Procedia Social and Behavioral Sciences, 12, 255-262.

    QR CODE