簡易檢索 / 詳目顯示

研究生: 林俊儀
Chun-I Lin
論文名稱: 以分子動力學模擬奈米壓印的加工行為
Molecular Dynamics Simulation of Nanoimprinting Process
指導教授: 張榮語
Rong-Yeu Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 107
中文關鍵詞: 分子動力學模擬玻璃轉化溫度奈米壓印
外文關鍵詞: molecular dynamics simulation, glass transition temperature, nanoimprint
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,分別利用分子動力學模擬高分子的玻璃轉化溫度以及奈米壓印的加工系統,文中先利用模擬技術了解所要使用高分子的玻璃轉化溫度,才可設定模擬壓印加工時所需的的溫度,期望可用模擬技術預先了解加工製造過程中所產生的問題,並可在實際實驗前先加以克服,降低加工成本及提高產率,以下將分兩部份對文中的內容做一簡述。
    (一)使用分子動力學模擬不同鏈長的高分子玻璃轉化溫度,模擬的鏈長分別為100、200、400及800,並探討隨著鏈長改變,玻璃轉化溫度的變化情形,此外並討論在相同鏈長下,而不同的系統壓力下,玻璃轉化溫度隨著壓力的變化情形。
    (二)利用分子動力學模擬在奈米尺度下壓印的加工過程,觀察並探討在壓印及脫模過程中所可能產生的問題,並進一步的觀察在壓印過程中,受壓印高分子的各項性質隨著時間的變化,包含密度、壓力、末端末端距離、分子鏈的排向性等。接著更進一步探討在不同加工速度下或降低金屬與高分子間的作用力對加工過程所產生的影響,從中可得壓力隨著加工速度的增加而增大,壓印時,壓印的壓力增大將容易造成模具的損壞;降低金屬和高分子間作用力雖可避免脫模時的沾黏,但也可能造成薄膜的脫離。最後將加工溫度設定在210K並降低金屬與高分子間的作用力,在加工時可得到成型的高分子奈米圖案。


    Molecular dynamics simulation is adopted to simulate the glass transition temperature of polymer and the nanoimprinting process in this research. The simulated glass transition temperature is applied to our imprinting process. We expect to have the advantage of low cost and high throughput by solving the problems of imprinting process with simulation technology before experiment. A brief statement divided into two parts is as follows.
    (一)Molecular dynamics is adopted to simulate the glass transition temperature of polymer at different chain length, and the chain length has 100,200,400 and 800, respectively. The simulated purpose is to explore the relation between the chain length and the glass transition temperature of polymer and the relation between the pressure and the glass transition temperature of polymer at the same chain length.
    (二)We adopt molecular dynamics to simulate the nano-scale imprinting process, and investigate the defects during imprinting and demolding step. Further observing the properties of imprinted polymer including density, pressure, end-to-end distance and orientation factor varies with time during imprinting process. Besides, studying imprinting process at different imprinting velocity or low interaction between metal particle and polymer particle will affect the simulated results or not. With increasing the imprinting velocity, the pressure of system gets larger. While the pressure of system getting larger, it maybe result in the break of mold. With lowering the interaction between metal particle and polymer particle, it can avoid the stick between metal and polymer. Finally, the nano-pattern of polymer can be observed by lowering both the imprinting temperature and the interaction.

    摘要 I Abstract II 目 錄 III 圖目錄 VI 表目錄 XII 符號說明 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 3 1.3 微影方式簡介 5 1.4 奈米壓印技術引論 11 1.4.1 奈米壓印技術概論 11 1.4.2 奈米壓印技術之優勢 13 1.4.3 奈米壓印之應用 13 1.5 分子動力模擬簡介 16 第二章 文獻回顧 18 2.1 奈米壓印技術文獻回顧 18 2.2 壓印製程文獻回顧 24 2.3 分子動力模擬文獻回顧 29 第三章 研究方法 38 3.1 分子動力學基本理論 38 3.1.1 模擬系統的初始化 38 3.1.2 運動行為的預測 39 3.1.3 系統的控制 42 3.1.4 物理性質的計算 47 3.2 加速分子動力模擬方法 51 3.2.1 分子勢能截斷法(Cutoff Distance) 51 3.2.2 Verlet 鄰近列表法(Neighbor List) 52 3.2.3 Cell-Linking 列表法 53 3.2.4 列表式勢能(Tabulated Potential)[35] 55 3.3 粒子間的勢能模型 57 3.2.1 簡單分子勢能模型 57 3.2.2 高分子勢能模型 58 3.2.3 其他勢能模型 61 第四章 模擬系統與數值方法 64 4.1 玻璃轉化溫度模擬系統 64 4.2 奈米壓印模擬系統 68 4.3 模擬的流程圖 72 第五章 結果與討論 73 5.1 玻璃轉化溫度 73 5.1.1 玻璃轉化溫度概述 73 5.1.2 玻璃轉化溫度之計算 74 5.2 奈米壓印系統之研究 82 5.2.1奈米壓印過程模擬 82 5.2.2不同的加工速度下 93 5.2.3金屬與高分子間作用力 96 5.2.4溫度210K及降低 時壓印過程 99 第六章 結論與未來展望 101 參考文獻 103

    1.蔡信行、孫光中,”奈米科技導論”,新文京開發出版有限公司,民國93年初版
    2.廖明吉,” 0.1微米世代的微影解決方法”,奈米通訊 第五卷第四期,1999
    3.陳力俊, “微電子材料與製程”,第六章 微影技術, 2000
    4.S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. vol.67(1995), pp.3114-3116
    5.S. Y. Chou, P. R. Karuss and P. J. Renstrom, “Nanoimprint Lithography”, J. Vac. Sci. Technol. B, vol.14(1996), pp.4129-4133
    6.S. Y. Chou, P. R. Karuss, P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution”, SCIENCE, vol.272(1996), pp.85-87
    7.B. J. Alder and T. E. Wainwright, “Phase Transition for A Hard Sphere System”, J. Chem. Phys. vol.27 pp.1208-1209
    8.A. Jabbarzadeh, J. D. Atkinson, R. I. Tanner, “Nanorheology of Molecularly Thin Films of n-hexadecane in Couette Shear Flow by Molecular Dynamics Simulation”, J. Non-Newtonian Fluid Mech., vol.77(1998), pp.53-78
    9.M. Moseler, U. Landman, “Formation, Stability, and breakup of nanojets”, Science, vol.289(2000), pp.1165-1169
    10.S. R. Jian, T. H. Fang, D. S. Chuu, “Effects of temperature on surface clusters by molecular dynamics simulation”, Physica B, vol.334(2003), pp.369-374
    11.X. Y. Guo, P. Brault, “Early Stages of silicon nitride film growth studied by molecular dynamics simulations”, Surface Science, vol.488(2001), pp.133-140
    12.T. H. Fang, C. I Weng, J. G. Chang, “Molecular dynamics simulation of nano-lithography process using atomic force microscopy”, Surface Science, vol.501(2002), pp.138-147
    13.楊日昌, “台灣奈米科技-從2004到嚮往的大未來”, 工研院奈米中心, 民國92年12月初版, pp.356-363
    14.S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, L. Zhuang, “Sub-10 nm imprint lithography and applications”, J. Vac. Sci. Technol. B, vol.15(1997), pp.2897-2904
    15.S. Y. Chou, P. R. Krauss, “Imprint Lithography with Sub-10 nm Feature Size and High Throughput”, Microelectronic Engineering, vol.35(1997), pp.237-240
    16.H. Tan, A. Gilbertson, S. Y. Chou, “Roller nanoimprint lithography”, J. Vac. Sci. Technol. B, vol.16(1998), pp.3926-3928
    17.Y. Xia, G. M. Whitesides, “Soft Lithography”, Angew. Chem. Int. Ed., vol.37(1998), pp.551-575
    18.C. G. Willson, T. Bailey, B. Smith, B. j. Choi, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, “Step and flash imprint lithography:Defect analysis”, J. Vac. Sci. Technol. B, voi.19(2001), pp.2806-2810
    19.G. Willson, S. V. Sreenivasan etc., “Develpoment of Imprint Materials for the Step and Flash Imprint Lithography Process”, Molecular Imprints Inc., University of Texas at Austin
    20.S. Y. Chou, C. Keimel, J. Gu, “Ultrafast and direct imprint of nanostructures in silicon”, NATURE, vol.417(2002), pp.835-837
    21.Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, S. Y. Chou, “Ultrafast patterning of nanostructure in polymers using laser assisted nanoimprint lithography”, Appl. Phys. Lett., vol.83(2003), pp.4417-4419
    22.賴文童,”微結構熱壓成形缺陷之探討”,國立交通大學碩士論文,民國89年6月
    23.Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, “Study of the resist deformation in nanoimprint lithography”, J. Vac. Technol. B, vol.19(2001), pp.2811-2815
    24.C. R. Lin, R. H. Chen, C. Hung, “The Characterisation and Finite-Element Analysis of a Polymer under Hot Pressing”, Int J Adv Manuf Technol, vol.20(2002), pp230-235
    25.Y. Hirai, S. Yoshida, N. Takagi, “Defect analysis in thermal nanoimprint lithography”, J. Vac. Sci. Technol. B, vol.21(2003), pp.2765-2770
    26.張哲豪,”流體惟熱壓製程開發研究”, 國立台灣大學碩士論文,民國93年六月
    27.趙啟仲,“軟模氣體熱壓應用於大面積微奈米壓印製程研究”, 國立台灣大學碩士論文,民國93年6月
    28.L. Guo, P. R. Krauss, S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprint lithography”, Appl. Phys. Lett., vol.71(1997), pp.1881-1883
    29.M. Li, L. Chen, S. Y. Chou, “Direct three-dimensional patterning using nanoimprint lithography “, Appl. Phys. Lett., vol.78(2001), pp.3322-3324
    30.A. Pépin, P. Youinou, V. Studer, A. Lebib, Y. Chen, “Nanoimprint lithography for the fabrication of DNA electrophoresis chips“, Microelectronic Engineering, vol.61-62(2002), pp.927-932
    31.M. D. Austin, S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography“, Appl. Phys. Lett., vol.81(2002), pp.4431-4433
    32.A. Rahman, “Correlation in the Motion of Atoms in Liquid Argon”, Phys. Rev., vol.136, pp.A405-A411
    33.B. J. Berne, R. Gordon, V. F. Sears, “On the Mechanics of Vibrational Relaxation”, J. Chem. Phys., vol.49(1968), p.475
    34.T. A. Kavassalis, P. R. Sundararajan, “A Molecular Dynamics Study of Polyethylene Crystallization”, Macromolecular, vol.26(1993), pp.4144-4150
    35.D. Wolff, W. G. Rudd, “Tabulated potentials in molecular dynamics simulations”, Computer Physics Communications, vol.120(1999), pp.20-32
    36.S. Fujiwara, T. Sato, “Molecular dynamics simulations of structural formation of a single polymer chain:Bond-orientational order and conformational defects”, J. Chem. Phys., vol.107(1997), pp.613-622
    37.S. Fujiwara, T. Sato, “Molecular dynamics study of structure formation of a single polymer chain by cooling”, Computer Physics Communications, vol.1 42(2001), pp.123-126
    38.T. Yamamoto, “Molecular dynamics modeling of polymer crystallization from the melt”, Polymer, vol.45(2004), pp.1357-1364
    39.S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods”, J. Chem. Phys., vol.81(1984), pp.511-519
    40.W. Hoover, “Canonical dynamics:Equilibrium phase-space distributions”, Physical Review A, vol.31(1985), pp.1695-1697
    41.W. Mattson, B. M. Rice, “Near-neighbor calculations using a modified cell-linked list method”, Computer Physics Communications, vol.119(1999), pp.135-148
    42.X. J. Fan, N. Phan-Thien, N. T. Yong, X. Diao, “Molecular Dynamics Simulation of A Liquid in A Complex Nano Channel Flow”, Physics of Fluids, vol.14(2002), pp.1146-1153
    43.B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, “New Approaches to Nanofabrication:Molding, Printing, and Other Techniques”, Chem. Rev. , vol.105(2005), pp.1171-1196
    44.T. H. Fang, C. I Weng, J. G. Chang, “Molecular dynamics simulation of nano-lithography process using atomic force microscopy”, Surface Science, vol.501(2002), pp.138-147
    45.Q. C. Hsu, C. D. Wu, T. H. Fang, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics”, Japanese Journal of Applied Physics, vol.43(2004), pp.7665-7669
    46.Q. C. Hsu, C. D. Wu, T. H. Fang, “Studies on nanoimprint process parameters of copper by molecular dynamics analysis”, Computational Materials Science, vol.34(2005), pp.314-322
    47.Y. Hirai, T. Konishi, T. Yoshikawa, and S. Yoshida, “Simulation and experimental study of polymer deformation in nanoimprint lithography”, J. Vac. Sci. Technol. B, vol.22(2004), pp.3288-3293
    48.A. Jabbarzadeh, J. D. Atkinson, R. I. Tanner, “Wall slip in the molecular dynamics simulation of thin films of hexadecane”, J. Chem. Phys., vol.110(1999), pp.2612-2620
    49.J. Han, R. H. Gee, R. H. Boyd, “Glass Transition Temperature of Polymers from Molecular Dynamics Simulations”, Macromolecules, vol.27(1994), pp.7781-7784
    50.L. Yang, D. J. Srolovitz, A. F. Yee, “Molecular dynamics study of isobaric and isochoric glass transitions in a model amorphous polymer”, J. Chem. Phys., vol.110(1999), pp.7058-7069
    51.B. F. Abu-Sharkh, “Glass transition temperature of poly( vinylchloride) from molecular dynamics simulation:explicit atom model versus rigid CH2 and CHCl groups model”, Computational and Theoretical Polymer Science, vol.11(2001), pp.29-34
    52.A. Soldera, N. Metatla, “Glass transition phenomena observed in stereoregular PMMAs using molecular modeling”, Composites Part A, vol.36(2005), pp.521-530
    53.H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., vol.81(1984), pp.3684-3690
    54.T. K. Xia, J. Ouyang, M. W. Ribarsky, U. Landman, “Interfacial Alkane Films”, Physical Review Letters, vol.69(1992), pp.1967-1970
    55.J. Tersoff, “New Empirical Models for the Structural Properties of Silicon”, Physical Review Letters, vol.56(1986), pp.632-635
    56.J. Tersoff, “New Empirical approach for the structure and energy of covalent system”, Physical Review B, vol.37(1988), pp.6991-7000
    57.J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties”, Physical Review B, vol.38(1988), pp.9902-9905
    58.C. A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, A. Errachid, “Production of structures for microfluidics using polymer imprint techniques”, Microelectronic Engineering, vol.78-79(2005), pp.695-700
    59.http://www.itri.org.tw/chi/index.jsp
    60.L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, “Flow behavior of thin polymer films used for hot embossing lithography”, Microelectronic Engineering, vol.54(2000), pp.229-245
    61.蔡宏營,”奈米轉印技術介紹”, 工研院機械研究所
    62.J. M. Haile, “Molecular Dynamics Simulation:Elementary Methods”, Wiley Professional Paperback Edition Published (1997)
    63.D.C. Rapaport, “ The Art of Molecular Dynamics Simulation”, Cambridge University Press, (1995)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE