研究生: |
陳啟仁 Chen, Chi-Jen |
---|---|
論文名稱: |
OCT4-NANOG Promotes Lung Cancer Oncogenesis through Induction of Epithelial-Mesenchymal Transdifferentiations. |
指導教授: |
吳成文
Wu, Cheng-Wen 劉銀樟 Liu, Yin-Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | OCT4 、NANOG 、EMT 、Cancer stem cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
OCT4 and NANOG are overexpressed in several cancers and involved in self-renewal signaling of stem cells, and downstream targets of OCT4 and NANOG are more frequently overexpressed in poorly differentiated tumors than in well-differentiated ones. However, little is known about the role of OCT4-NANOG signaling in lung cancer development. We discovered that both OCT4 and NANOG were co-overexpressed in adenocarcinoma. Overexpression of OCT4 and NANOG enhanced anchorage-independent cell growth in lung cancer, and promoted Xenograft lung tumor growth with poorly differentiated phenotype. Interestingly, overexpression of OCT4 and NANOG in lung cancer induced CD133+ cells and sphere formation, suggesting a regulatory role of OCT4-NANOG signaling in cancer stem cell formation. We identified that OCT4-NANOG promoted cell migration and induced epithelial-mesenchymal transition (EMT) through upregulation of SLUG, SNAIL, TWIST and TGF-β RI. As our knowledge, this is the first report demonstrating that OCT4-NANOG signaling promotes oncogenesis through induction of EMT.
前人研究指出,主要調控幹細胞自我更新 (self-renewal)的兩個重要基因
OCT4及NANOG高量表現在多種癌症中。與分化較完全的腫瘤 (well-differentiated tumor)相較之下,OCT4及NANOG所調控的下游(downstream)訊息分子,高量表現在分化不完全的腫瘤組織(poor differentiated tumor)。然而,OCT4及NANOG所調控的訊息路徑,對於肺癌發展所產生的影響則尚未十分清楚。我們發現OCT4及NANOG在肺腺癌組織中 (primary lung adenocarcinoma)呈現共同超量表現的現象。 OCT4及NANOG在肺腺癌細胞中的超量表現,會增加細胞不貼附生長 (anchorage-independent growth)的特性、促進異體移植(Xenograft)的細胞生長、並產生分化未完全的細胞型態 (poor differentiated phenotype)。 研究結果顯示,OCT4及NANOG具有誘發肺癌中CD133+ 細胞及增強腫瘤球體 (tumor sphere)形成的作用。換言之,OCT4及NANOG可能經由誘發訊息路徑,共同調節癌幹細胞(cancer stem cells)的產生及增生。此外,我們也發現,藉由活化SLUG、 SNAIL、TWIST及TGF-β RI等因子,OCT4-NANOG具有誘導肺癌細胞由上皮細胞轉化為間質細胞 (Epithelial Mesenchymal transition, EMT) 的效果,進而促進肺癌細胞移動能力(migration ability)。上述實驗結果顯示,OCT4及NANOG經由幹細胞路徑,誘導EMT的發生而提高細胞的癌化能力(Oncogenesis)。
Reference
Al-Hajj, M., M. S. Wicha, et al. (2003). "Prospective identification of tumorigenic breast cancer cells." Proc Natl Acad Sci U S A 100(7): 3983-8.
Batlle, E., E. Sancho, et al. (2000). "The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells." Nat Cell Biol 2(2): 84-9.
Baum, B., J. Settleman, et al. (2008). "Transitions between epithelial and mesenchymal states in development and disease." Semin Cell Dev Biol 19(3): 294-308.
Ben-Porath, I., M. W. Thomson, et al. (2008). "An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors." Nat Genet 40(5): 499-507.
Boiani, M. and H. R. Scholer (2005). "Regulatory networks in embryo-derived pluripotent stem cells." Nat Rev Mol Cell Biol 6(11): 872-84.
Boyer, L. A., T. I. Lee, et al. (2005). "Core transcriptional regulatory circuitry in human embryonic stem cells." Cell 122(6): 947-56.
Chen, Y., L. Shi, et al. (2008). "The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer." J Biol Chem 283(26): 17969-78.
Chiou, S. H., C. L. Kao, et al. (2008). "Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor." PLoS One 3(5): e2090.
Chiou, S. H., C. C. Yu, et al. (2008). "Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma." Clin Cancer Res 14(13): 4085-95.
Dallas, N. A., L. Xia, et al. (2009). "Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition." Cancer Res 69(5): 1951-7.
Derynck, R. and R. J. Akhurst (2007). "Differentiation plasticity regulated by TGF-beta family proteins in development and disease." Nat Cell Biol 9(9): 1000-4.
Dimeo, T. A., K. Anderson, et al. (2009). "A Novel Lung Metastasis Signature Links Wnt Signaling with Cancer Cell Self-Renewal and Epithelial-Mesenchymal Transition in Basal-like Breast Cancer." Cancer Res.
Dontu, G., W. M. Abdallah, et al. (2003). "In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells." Genes Dev 17(10): 1253-70.
Eramo, A., F. Lotti, et al. (2008). "Identification and expansion of the tumorigenic lung cancer stem cell population." Cell Death Differ 15(3): 504-14.
Gupta, G. P. and J. Massague (2006). "Cancer metastasis: building a framework." Cell 127(4): 679-95.
Hilbe, W., S. Dirnhofer, et al. (2004). "CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer." J Clin Pathol 57(9): 965-9.
Hu, T., S. Liu, et al. (2008). "Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis." Cancer Res 68(16): 6533-40.
Jeter, C. R., M. Badeaux, et al. (2009). "Functional evidence that the self-renewal gene NANOG regulates human tumor development." Stem Cells 27(5): 993-1005.
Jethwa, P., M. Naqvi, et al. (2008). "Overexpression of Slug is associated with malignant progression of esophageal adenocarcinoma." World J Gastroenterol 14(7): 1044-52.
Karoubi, G., M. Gugger, et al. (2009). "OCT4 expression in human non-small cell lung cancer: implications for therapeutic intervention." Interact Cardiovasc Thorac Surg 8(4): 393-7.
Kasai, H., J. T. Allen, et al. (2005). "TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT)." Respir Res 6: 56.
Lapidot, T., C. Sirard, et al. (1994). "A cell initiating human acute myeloid leukaemia after transplantation into SCID mice." Nature 367(6464): 645-8.
Mani, S. A., W. Guo, et al. (2008). "The epithelial-mesenchymal transition generates cells with properties of stem cells." Cell 133(4): 704-15.
McCord, A. M., M. Jamal, et al. (2009). "Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro." Mol Cancer Res 7(4): 489-97.
Mythreye, K. and G. C. Blobe (2009). "The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42." Proc Natl Acad Sci U S A 106(20): 8221-6.
Nakagawa, M., M. Koyanagi, et al. (2008). "Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts." Nat Biotechnol 26(1): 101-6.
Navarro, P., E. Lozano, et al. (1993). "Expression of E- or P-cadherin is not sufficient to modify the morphology and the tumorigenic behavior of murine spindle carcinoma cells. Possible involvement of plakoglobin." J Cell Sci 105 ( Pt 4): 923-34.
Niessen, C. M. and C. J. Gottardi (2008). "Molecular components of the adherens junction." Biochim Biophys Acta 1778(3): 562-71.
Pan, G. J. and D. Q. Pei (2003). "Identification of two distinct transactivation domains in the pluripotency sustaining factor nanog." Cell Res 13(6): 499-502.
Perez-Moreno, M. A., A. Locascio, et al. (2001). "A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions." J Biol Chem 276(29): 27424-31.
Piestun, D., B. S. Kochupurakkal, et al. (2006). "Nanog transforms NIH3T3 cells and targets cell-type restricted genes." Biochem Biophys Res Commun 343(1): 279-85.
Ragge, N. K., B. Lorenz, et al. (2005). "SOX2 anophthalmia syndrome." Am J Med Genet A 135(1): 1-7; discussion 8.
Singh, S. K., C. Hawkins, et al. (2004). "Identification of human brain tumour initiating cells." Nature 432(7015): 396-401.
Siu, M. K., E. S. Wong, et al. (2008). "Overexpression of NANOG in gestational trophoblastic diseases: effect on apoptosis, cell invasion, and clinical outcome." Am J Pathol 173(4): 1165-72.
Slack, F. (2009). "let-7 microRNA reduces tumor growth." Cell Cycle 8(12): 1823.
Suva, M. L., N. Riggi, et al. (2009). "Identification of cancer stem cells in Ewing's sarcoma." Cancer Res 69(5): 1776-81.
Takahashi, K., K. Okita, et al. (2007). "Induction of pluripotent stem cells from fibroblast cultures." Nat Protoc 2(12): 3081-9.
Tsuji, T., S. Ibaragi, et al. (2008). "Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth." Cancer Res 68(24): 10377-86.
Viswanathan, S. R., G. Q. Daley, et al. (2008). "Selective blockade of microRNA processing by Lin28." Science 320(5872): 97-100.
Vormoor, J., T. Lapidot, et al. (1994). "SCID mice as an in vivo model of human cord blood hematopoiesis." Blood Cells 20(2-3): 316-20; discussion 320-2.
Wang, Q., W. He, et al. (2009). "Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma." Anticancer Res 29(4): 1233-41.
Wong, D. J., H. Liu, et al. (2008). "Module map of stem cell genes guides creation of epithelial cancer stem cells." Cell Stem Cell 2(4): 333-44.
Wright, M. H., A. M. Calcagno, et al. (2008). "Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics." Breast Cancer Res 10(1): R10.
Xu, J., S. Lamouille, et al. (2009). "TGF-beta-induced epithelial to mesenchymal transition." Cell Res 19(2): 156-72.
Yu, J., M. A. Vodyanik, et al. (2007). "Induced pluripotent stem cell lines derived from human somatic cells." Science 318(5858): 1917-20.
Zhou, Q., H. Chipperfield, et al. (2007). "A gene regulatory network in mouse embryonic stem cells." Proc Natl Acad Sci U S A 104(42): 16438-43.