簡易檢索 / 詳目顯示

研究生: 沈芷薇
Shen, Chih-Wei
論文名稱: 以mPEG-PLCL自組裝形成微胞作為包覆阿黴素載體之研究
Development of mPEG-PLCL micelles for doxorubicin delivery
指導教授: 朱一民
Chu, I-Ming
口試委員: 蔡德豪
林世傑
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 54
中文關鍵詞: 奈米微胞阿黴素聚酯類高分子
外文關鍵詞: doxorubicin, mPEG-PLCL, nanoparticle
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 部分聚酯類高分子為具有良好生物相容性且可降解之材料,做為藥物載體時具有可控制釋放的性質,故目前在醫藥領域中受到重視。本研究利用包含聚酯類的高分子且帶有兩親性的團聯共聚物,在水相環境中可以自組裝形成疏水在內而親水在外的微胞,利用此核殼結構的微胞來包覆藥物,可以達到控制釋放並提升藥物療效的目的。
    本研究利用methoxy poly(ethylene glycol)作為起始劑,加入D, L-lactide及caprolactone進行開環聚合反應,合成出不同鏈段長短的mPEG-PLCL兩親性團聯共聚物。利用1H-NMR、FTIR與GPC確定高分子的結構與分子量,並測量臨界微胞濃度與表面性質,實驗結果顯示所合成的高分子在低濃度下即可形成微胞。而粒徑測量結果可發現,當高分子親水鏈段增長時,微胞粒徑則隨之上升,而疏水鏈段增長時,微胞粒徑則下降。在TEM下可觀察到微胞呈現球狀且分散性良好,沒有明顯聚集的現象。
    阿黴素(Doxorubicin)為目前臨床應用的抗癌藥物,本研究選用阿黴素做為包覆的藥物,並利用不同製備方法來製成微胞。製備方法可分為薄膜分散法、超音波分散法與溶劑分散法,並探討不同製備方法以及不同高分子組成在微胞性質與包覆程度之差異,以找出最適合的製程。結果顯示薄膜分散法的包覆量較高,約為2.1 wt%。微胞粒徑為135 nm左右,並可穩定維持兩天以上。體外藥物釋放結果顯示,包藥後的微胞能改善藥物突釋現象,並且在24小時後依然持續釋放藥物。由細胞實驗可發現所合成高分子的生物相容性良好,且包藥後的微胞有良好毒殺癌細胞的能力。
    由以上結果顯示,mPEG-PLCL兩親性團聯共聚物確實可做為包覆藥物之材料,且微胞粒徑在50-200 nm時有助於腫瘤組織的高滲透長滯留效應,讓微胞集中累積在腫瘤內,使此微胞具有良好的發展潛力。


    Certain polyesters are well-known for their good biocompatibility and biodegradability, so plenty of studies have been conducted on using polyesters for biomedical applications. And owing to the self-assembly behavior of amphiphilic block copolymers, micellar structures are formed in aqueous system with hydrophobic segments as core and hydrophilic segments as shell. By the encapsulation of hydrophobic drugs and the proper-designed function of controlled release, the drug loaded micelles could be used as drug carriers to improve the therapeutic effect of drugs.
    In this study, methoxy poly(ethylene glycol)-co-poly(D, L-lactide-co-ε-caprolactone) (mPEG-PLCL) was studied for drug delivery. By changing the ratio between hydrophilic and hydrophobic blocks, mPEG-PLCL micelles were optimized to carry doxorubicin (DOX) with higher loading content and stability in aqueous system. Meanwhile, different preparation methods were compared, including film dispersion method, ultrasonic dispersion method and solvent dispersion method. Here, mPEG-PLCL polymers were analyzed by 1H-NMR, GPC and FTIR to characterize their molecular structures and molecular weights. Their physicochemical properties, morphology, stability and loading capacity were also measured. The size of these micelles were around 50-200 nm, which were suitable for EPR effect at tumor sites. DOX-loaded NPs presented a sustained release behavior with less burst release at the beginning. In vitro cytotoxicity test showed that DOX-loaded NPs had excellent antitumor effect. Therefore, after further adjustments, these DOX loaded micelles could become promising candidates for cancer therapy.

    摘要 I Abstract II 誌謝 III 第一章 文獻回顧 1 1.1 生醫材料 1 1.2 可降解性合成高分子材料 3 1.2.1 降解與侵蝕 4 1.2.2 影響降解速率因素 4 1.3 聚酯類 7 1.4 藥物釋放系統 10 1.4.1 藥物控制釋放機制 11 1.4.2 常見藥物釋放載體類型 12 1.5 阿黴素(Doxorubicin, DOX) 16 第二章 研究動機 17 第三章 實驗藥品與設備 18 3.1 實驗藥品 18 3.2 實驗設備 19 第四章 實驗步驟與方法 20 4.1 實驗架構 20 4.2 mPEG-PLCL兩親性團聯共聚物製備 21 4.3 mPEG-PLCL包覆阿黴素之微胞(DOX-loaded NPs)包覆方式 22 4.4 化學結構鑑定與性質分析 23 4.4.1 氫原子核磁共振光譜儀(1H-NMR) 23 4.4.2 凝膠滲透層析儀(Gel permeation chromatography, GPC) 23 4.4.3 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR) 23 4.4.4 臨界微胞濃度測定(Critical micelle concentration, CMC) 24 4.4.5 動態光散射儀(Dynamic light scattering, DLS) 25 4.4.6 穿透式電子顯微鏡(Transmission electron microscope, TEM) 25 4.4.7 表面電位分析(Zeta Potential) 25 4.4.8 微胞穩定度分析 25 4.4.9 Doxorubicin濃度標準曲線建立 26 4.4.10 藥物包覆量與包覆率測試 26 4.4.11 體外藥物釋放 27 4.4.12 細胞培養 27 4.4.13 毒性測試 28 4.4.14 細胞吞噬實驗 29 第五章 實驗結果與討論 30 5.1 兩親性團聯共聚物之結構與性質分析 30 5.1.1 核磁共振結果分析(1H-NMR) 30 5.1.2 膠體滲透層析儀之分子量量測(GPC) 31 5.1.3 傅立葉轉換紅外光譜鑑定(FTIR) 32 5.1.4 臨界微胞濃度(CMC) 33 5.1.5 微胞粒徑量測 35 5.1.6 微胞型態觀察 35 5.1.7 表面電位分析 36 5.2 mPEG-PLCL包覆阿黴素之微胞結構與性質分析 38 5.2.1 藥物包覆量測試 38 5.2.2 微胞粒徑量測 39 5.2.3 微胞型態觀察 40 5.2.4 表面電位分析 40 5.2.5 微胞穩定度分析 41 5.2.6 體外藥物釋放 42 5.3 細胞實驗 43 5.3.1 毒性測試 43 5.3.2 細胞吞噬實驗 45 第六章 結論與未來展望 47 參考資料 48 附錄 53

    1. Pillai, O., Panchagnula, R., Polymers in drug delivery. Curr Opin Chem Biol, 2001. 5(4): p. 447-451.
    2. Kunduru, K. R., Basu, A., Domb, A. J. , Biodegradable Polymers: Medical Applications. EPST, 2002: p. 1-22.
    3. Tamada, J. A., Langer, R., Erosion kinetics of hydrolytically degradable polymers. Proc. Nadl. Acad. Sci., 1993. 90(2): p. 552-556.
    4. Burkersroda, F. V., Schedl, L., Göpferich, A., Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002. 23(21): p. 4221-4231.
    5. Göpferich, A., Polymer bulk erosion. Macromolecules, 1997. 30(9): p. 2598-2604.
    6. Göpferich, A., Mechanisms of polymer degradation and erosion. Biomoterials, 1996. 17(2): p. 103-114.
    7. Chu, B. Y., Zhang. L., Qu, Y., Chen, X. X., Peng, J. R., Huang, Y. X., Qian, Z. Y., Synthesis, characterization and drug loading property of Monomethoxy-Poly (ethylene glycol)-Poly (ε-caprolactone)-Poly (D, L-lactide)(MPEG-PCLA) copolymers. Sci. Rep., 2016. 6: p. 34069.
    8. Elsawya, M. A., Kim, K. H., Park, J. W., Deep, A., Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sust. Energ. Rev., 2017. 79: p. 1346-1352.
    9. Zhang, C., Biodegradable polyesters: synthesis, properties, applications. Biodegradable Polyesters, ed. S. Fakirov. 2015. 1-24.
    10. Ball, D. W., Hill, J. W., Scott, R. J., The basics of general, organic, and biological chemistry. 2011: Open Textbook Library.
    11. Bu, Y., Ma, J., Bei, J., Wang, S. , Surface Modification of Aliphatic Polyester to Enhance Biocompatibility. Front. bioeng. biotechnol., 2019. 7: p. 98.
    12. Fukushima, K., Feijoo, J. L., Yang, M. C., Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur. Polym. J., 2013. 49(3): p. 706-717.
    13. Jenkins, M. J., Harrison, K. L. , The effect of molecular weight on the crystallization kinetics of polycaprolactone. Polym. Adv. Technol., 2006. 17(6): p. 474-478.
    14. Woodruff, M. A., Hutmacher, D. W., The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci., 2010. 35(10): p. 1217-1256.
    15. Anselmo, A. C., Mitragotri, S., An overview of clinical and commercial impact of drug delivery systems. J. Control. Release, 2014. 190: p. 15-28.
    16. Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., Shakesheff, K. M., Polymeric systems for controlled drug release. Chem. Rev., 1999. 99(11): p. 3181-3198.
    17. Das, D., Pal, S., Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Advances, 2015. 5(32): p. 25014-25050.
    18. Blum, A. P., Kammeyer, J. K., Rush, A. M., Callmann, C. E., Hahn, M. E., Gianneschi, N. C. , Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc., 2015. 137(6): p. 2140-2154.
    19. Lin, C. C., Metters, A. T., Hydrogels in controlled release formulations: network design and mathematical modeling. ‎Adv. Drug Deliv. Rev., 2006. 58(12-13): p. 1379-1408.
    20. Jeong, Y., Joo, M. K., Bahk, K. H., Choi, Y. Y., Kim, H. T., Kim, W. K., Lee, H. J., Sohn, Y. S., Jeong, B., Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. ‎J. Control. Release, 2009. 137(1): p. 25-30.
    21. Chung, H. J., Lee, Y., Park, T. G., Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. ‎J. Control. Release, 2008. 127(1): p. 22-30.
    22. Wang, X., Hu, H., Wang, W., Lee, K. I., Gao, C., He, L., Wang, Y., Lai, C., Fei, B., Xin, J. H., Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release. Colloids Surf. B., 2016. 143: p. 342-351.
    23. Mishra, G. P., Kinser, R., Wierzbicki, I. H., Alany, R. G., Alani, A. W. G., In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery. ‎Eur. J. Pharm. Biopharm., 2014. 88(2): p. 397-405.
    24. Shim, W. S., Kim, J. H., Kim, K., Kim, Y. S., Park, R. W., Kim, I. S., Kwon, I. C., Lee, D. S., pH-and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. ‎Int. J. Pharm., 2007. 331(1): p. 11-18.
    25. Huynh, C. T., Nguyen, M. K., Kim, J. H., Kang, S. W., Kim, B. S., Lee, D. S., Sustained delivery of doxorubicin using biodegradable pH/temperature-sensitive poly (ethylene glycol)-poly (β-amino ester urethane) multiblock copolymer hydrogels. Soft Matter, 2011. 7(10): p. 4974-4982.
    26. Chung, H. J., Park, T. G., Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today, 2009. 4(5): p. 429-437.
    27. Sharma, A., Sharma, U. S., Liposomes in drug delivery: progress and limitations. Int. J. Pharm., 1997. 154(2): p. 123-140.
    28. Kataoka, K., Harada, A., Nagasaki, Y., Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev., 2012. 64: p. 37-48.
    29. Deng, H., Liu, J., Zhao, X., Zhang, Y., Liu, J., Xu, S., Deng, L., Dong, A., Zhang, J., PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin. Biomacromolecules, 2014. 15(11): p. 4281-4292.
    30. Chu, B., Shi, S., Li, X., Hu, L., Shi, L., Zhang, H., Xu, Q., Ye, L., Lin, G., Zhang, N., Preparation and evaluation of teniposide-loaded polymeric micelles for breast cancer therapy. ‎Int. J. Pharm., 2016. 513(1-2): p. 118-129.
    31. Zhang, L., Tan, L. W., Chen, L. J., Chen, X. X., Long, C. F., Peng, J., Qian, Z., A simple method to improve the stability of docetaxel micelles. Sci. Rep., 2016. 6: p. 36957.
    32. Kwon, D. Y., Tai, G. Z., Park, J. H., Lee, B, K., Lee, J. H., Kim, J. H., Lee, K. W., Lee, B., Jang, J. W., Kim, M. S., Preparation of methoxy poly (ethyleneglycol)-b-poly (ε-caprolactone-co-L-lactide) and characterization as biodegradable micelles. J. Polym. Res., 2014. 21(6): p. 474.
    33. Xu, J., Zhao, Q., Jin, Y., Qiu, L., High loading of hydrophilic/hydrophobic doxorubicin into polyphosphazene polymersome for breast cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 2014. 10(2): p. 349-358.
    34. Ye, G., Jiang, Y., Yang, X., Hu, H., Wang, B., Sun, L., Yang, V. C., Sun, D., Gao, W. and interfaces, Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment. ACS Appl. Mater. Interfaces, 2017. 10(1): p. 278-289.
    35. Sun, C., Zhou, L., Gou, M., Shi, S., Li, T., Lang, J., Improved antitumor activity and reduced myocardial toxicity of doxorubicin encapsulated in MPEG-PCL nanoparticles. Oncol. Rep., 2016. 35(6): p. 3600-3606.
    36. Li, M., Song, W., Tang, Z., Lv, S., Lin, L., Sun, H., Li, Q., Yang, Y., Hong, H., Chen, X., Nanoscaled poly (L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl. Mater. Interfaces, 2013. 5(5): p. 1781-1792.
    37. Miryala, B., Godeshala, S., Grandhi, T. S. P., Christensen, M. D., Tian, Y., Rege, K., Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery. Colloids Surf. B, 2016. 146: p. 924-937.
    38. Wang, B. L., Shen, Y. M., Zhang, Q. W., Li, Y. L., Luo, M., Liu, Z., Li, Y., Qian, Z. Y., Shi, H. S., Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. ‎Int. J. Nanomed., 2013. 8: p. 3521.
    39. Li, Y., Du, W., Fu, Z., Wang, H., Wang, J., Le, Y., Zhang, J., Wen, N., pH-Responsive Polycarbonate Copolymer-based Nanoparticles for Targeted Anticancer Drug Delivery. Chem. Res. Chin. Univ., 2018. 34(6): p. 1041-1050.
    40. Lim, C. W., Park, J. H., Ahn, C. H., Kim, D., Self-assembled nanoaggregates based on polyaspartamide graft copolymers for pH-controlled release of doxorubicin. J. Mater. Chem. B, 2015. 3(15): p. 2978-2985.
    41. Gaumet, M., Vargas, A., Gurny, R., Delie, F. and biopharmaceutics, Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm., 2008. 69(1): p. 1-9.
    42. Abdalla, A. M. E., Xiao, L., Ullah, M. W., Yu, M., Ouyang, C., Yang, G., Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 2018. 8(2): p. 533-548.
    43. Thuy, V. T. T., Lim, C. W., Park, J. H., Ahn, C. H., Kim, D., Self-assembled nanoaggregates based on polyaspartamide graft copolymers for pH-controlled release of doxorubicin. J. Mater. Chem. B, 2015. 3(15): p. 2978-2985.
    44. Fornari, F. A., Randolph, J. K., Yalowich, J. C., Ritke, M. K., Gewirtz, D. A., Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol. Pharmacol., 1994. 45(4): p. 649-656.
    45. Zhu, H., Sarkar, S., Scott, L., Danelisen, I., Trush, M. A., Jia, Z., Li, Y. R., Doxorubicin redox biology: redox cycling, topoisomerase inhibition, and oxidative stress. React Oxyg Species (Apex), 2016. 1(3): p. 189-198.
    46. Arola, O. J., Saraste, A., Pulkki, K., Kallajoki, M., Parvinen, M., Voipio-Pulkki, L. M., Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res., 2000. 60(7): p. 1789-1792.
    47. Zhang, Y. W., Shi, J., Li, Y. J., Wei, L., Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp., 2009. 57(6): p. 435-445.
    48. Gref, R., Domb, A., Quellec, P., Blunk, T., Müller, R. H., Verbavatz, J. M., Langer, R., The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. ‎Adv. Drug Deliv. Rev., 1995. 16(2-3): p. 215-233.
    49. Wang, C., Wang, Y. J., Wang, Y., Fan, M., Luo, F., Qian, Z. Y., Characterization, pharmacokinetics and disposition of novel nanoscale preparations of paclitaxel. Int. J. Pharm., 2011. 414(1-2): p. 251-259.
    50. Soheyla, H., Foruhe, Z. , Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res, 2013. 12(2): p. 265-273.

    QR CODE