研究生: |
張盛德 Chang, Sheng-Te |
---|---|
論文名稱: |
配位基結構對水相中銅羥基酸錯合物光生成一價銅之效應 Effects of the Ligand Structure on the Photoformation of Cu(I) from Cu(II)/α-Hydroxy Acid Complexes in Aqueous Solution |
指導教授: |
吳劍侯
Wu, Chien-Hou |
口試委員: |
黃國柱
Hwang, Kuo-Chu 吳淑褓 Wu, Shu-Pao 黃郁棻 Hwang, Yu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 205 |
中文關鍵詞: | 光化學反應 、銅錯合物 、α-羥基酸 、一價銅量子產率 、光產物 |
外文關鍵詞: | Photochemical reaction, Copper complexes, α-Hydroxy acids, Copper(I) quantum yields, Photoproduct |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一價銅量子產率的測定,對於評估天然水系統中二價銅與多種有機配位基所形成錯合物的光反應性極其重要。在25 °C下,透過改變除氧水溶液中的pH值、總羥基酸濃度與總二價銅濃度等廣泛的實驗條件,系統性地研究配位基結構對於銅羥基酸錯合物系統光生成一價銅的效應。於波長為313 nm的光照射下,銅羥基酸錯合物經由配位基-金屬電荷轉移躍遷(LMCT)誘導一價銅的生成。個別銅羥基酸錯合物於313 nm的莫耳吸收係數與一價銅的量子產率,主要是利用計算的平衡二價銅形態表徵,其中也考慮共存的無機銅物種。使用多元線性回歸分析測定1:1 (CuL)與1:2 (CuL2)的銅羥基酸錯合物生成一價銅的量子產率。CuL的一價銅量子產率(ΦCu(I),CuL)遵循以下趨勢:2-羥基異丁酸(0.432 ± 0.228) > 乳酸(0.296 ± 0.168) > 乙醇酸(0.142 ± 0.099),而CuL2的一價銅量子產率(ΦCu(I),CuL2)也依循相同趨勢:2-羥基異丁酸(0.617 ± 0.118) > 乳酸(0.328 ± 0.065) > 乙醇酸(0.212 ± 0.041)。這些結果顯示,ΦCu(I),CuL與ΦCu(I),CuL2的數值隨著羥基酸中α-位置的碳原子所接的甲基數量增加而增大。此相對光反應性的趨勢與源自羥基酸的羥烷自由基(α-hydroxyalkyl radicals)所預期相對穩定性的趨勢一致。此外,由個別銅錯合物光生成甲醛、乙醛與丙酮的量子產率也被初步測定。對於銅乙醇酸系統而言,CuL與CuL2的甲醛量子產率為0.069 ± 0.041與0.114 ± 0.019。對於銅乳酸系統而言,CuL與CuL2的乙醛量子產率為0.154 ± 0.108與0.187 ± 0.048。對於銅2-羥基異丁酸系統而言,CuL與CuL2的丙酮量子產率為0.198 ± 0.080與0.341 ± 0.039。CuL2的量子產率始終大於CuL,其可歸因於α-羥基可穩定錯合物的激發態,有利於進行LMCT躍遷。對於CuL和CuL2,Cu(I)和這些羰基產物的個別量子產率的比例約為2。在此也提出這些所觀察光產物的光化學反應機制。
Determination of Cu(I) quantum yield is of crucial importance for assessing the photoreactivity of Cu(II) complexes with various organic ligands in natural water systems. The effect of ligand structure on the photoformation of Cu(I) from Cu(II)/α-hydroxy acid complex systems has been systematically studied at 25 °C in deaerated aqueous solutions over an extensive range of pH, total α-hydroxy acid concentration, and total Cu(II) concentration. Under irradiation at 313 nm, the Cu(I) photoformation from Cu(II)/α-hydroxy acid complexes is induced by the ligand-to-metal charge transfer (LMCT) transition. Molar absorptivities and Cu(I) quantum yields for individual Cu(II)/α-hydroxy acid complexes at 313 nm are characterized principally with the calculated equilibrium Cu(II) speciation, where the presence of the concomitantly existing inorganic Cu(II) species is taken into account. Individual Cu(I) quantum yields for the 1:1 complex (CuL) and the 1:2 complex (CuL2) are determined by using the multivariate linear regression analysis. The Cu(I) quantum yields for CuL (ΦCu(I),CuL) follow the trend: 2-hydroxyisobutyric acid (2-HIBA) (0.432 ± 0.228) > lactic acid (LA) (0.296 ± 0.168) > glycolic acid (GA) (0.142 ± 0.099), and those for CuL2 (ΦCu(I),CuL2) also have similar trend: 2-HIBA (0.617 ± 0.118) > LA (0.328 ± 0.065) > GA (0.212 ± 0.041). These results indicate that ΦCu(I),CuL and ΦCu(I),CuL2 increase as the number of methyl groups attached to the α-carbon of α-hydroxy acid increases. This trend in relative photoreactivity is in line with the trend in anticipated relative stability of the α-hydroxyalkyl radicals derived from the α-hydroxy acids. In addition, individual quantum yields of formaldehyde, acetaldehyde, and acetone from GA, LA, and 2-HIBA systems have been preliminarily determined, respectively. Individual quantum yields of formaldehyde, acetaldehyde, and acetone for CuL and CuL2 are 0.069 ± 0.041, 0.114 ± 0.019, 0.154 ± 0.108, 0.187 ± 0.048, 0.198 ± 0.080, and 0.341 ± 0.039, respectively. CuL2 has always larger quantum yields than CuL, which may be attributable to the stabilizing effect of α-OH group on the excited state to favor the forward LMCT transition. For both CuL and CuL2, the individual quantum yields of Cu(I) and carbonyl photoproducts are approximately in the ratio of 2:1. A photochemical reaction mechanism for the formation of these observed photoproducts is proposed.
Abbott, L. C.; Batchelor, S. N.; Lindsay Smith, J. R.; Moore, J. N. Reductive reaction mechanisms of the azo dye orange II in aqueous solution and in cellulose: From radical intermediates to products. J. Phys. Chem. A 2009, 113, 6091–6103.
Abrahamson, H. B.; Rezvani, A. B.; Brushmiller, J. G. Photochemical and spectroscopic studies of complexes, of iron(III) with citric acid and other carboxylic acids. Inorg. Chim. Acta 1994, 226, 117–127.
Abualhaija, M. M.; Whitby, H.; van den Berg, C. M. G. Competition between copper and iron for humic ligands in estuarine waters. Mar. Chem. 2015, 172, 46–56.
Ahmed, I. A. M.; Hamilton−Taylor, J.; Lofts, S.; Meeussen, J. C. L.; Lin, C.; Zhang, H.; Davison, W. Testing copper-speciation predictions in freshwaters over a wide range of metal–organic matter ratios. Environ. Sci. Technol. 2013, 47, 1487–1495.
Aida, T. M.; Yamagata, T.; Abe, C.; Kawanami, H.; Watanabe, M.; Smith, R. L. Production of organic acids from alginate in high temperature water. J. Supercrit. Fluids 2012, 65, 39–44.
Allen, J. M.; Allen, S. K.; Baertschi, S. W. 2-Nitrobenzaldehyde: A convenient UV-A and UV-B chemical actinometer for drug photostability testing. J. Pharm. Biomed. Anal. 2000, 24, 167−178.
Andrianirinaharivelo, S. L.; Bolte, M. Photochemical behaviour of copper(II) nitrilotriacetate in aqueous solution. J. Photochem. Photobiol., A 1993, 73, 213−216.
Arakaki, T.; Saito, K.; Okada, K.; Nakajima, H.; Hitomi, Y. Contribution of fulvic acid to the photochemical formation of Fe(II) in acidic Suwannee River fulvic acid solutions. Chemosphere 2010, 78, 1023–1027.
Bagchi, P.; Morgan, M. T.; Bacsa, J.; Fahrni, C. J. Robust affinity standards for Cu(I) biochemistry. J. Am. Chem. Soc. 2013, 135, 18549–18559.
Balboa, S.; Castiñeiras, A.; Herle, P. S.; Strähle, J. Z. Anorg. Allg. Chem. 2007, 633, 2420–2424.
Bartosewicz, B.; Bujno, K.; Liszewska, M.; Budner, B.; Bazarnik, P.; Płociński, T.; Jankiewicz, B. J. Effect of citrate substitution by various α-hydroxycarboxylate anions on properties of gold nanoparticles synthesized by Turkevich method. Colloids Surf., A 2018, 549, 25–33.
Beil, A.; Müller, G.; Käser, D.; Hattendorf, B.; Li, Z.; Krumeich, F.; Rosenthal, A.; Rana, V. K.; Schönberg, H.; Benkő, Z.; Grützmacher, H. Bismesitoylphosphinic acid (BAPO‐OH): A ligand for copper complexes and four‐electron photoreductant for the preparation of copper nanomaterials. Angew. Chem., Int. Ed. 2018, 57, 7697–7702.
Bernardo, M. M.; Heeg, M. J.; Schroeder, R. R.; Ochrymowycz, L. A.; Rorabacher, D. B. Comparison of the influence of saturated nitrogen and sulfur donor atoms on the properties of copper(II/I)-macrocyclic polyamino polythiaether ligand complexes: Redox potentials and protonation and stability constants of CuIL species and new structural data. Inorg. Chem. 1992, 31, 191–198.
Björklund, L. B.; Morrison, G.M. Determination of copper speciation in freshwater samples through SPE-spectrophotometry. Anal. Chim. Acta 1997, 343, 259–266.
Blair, D.; Diehl, H. Bathophenanthrolinedisulphonic acid and bathocuproinedisulphonic acid, water soluble reagents for iron and copper. Talanta 1961, 7, 163–174.
Bolton, J. R.; Mayor-Smith, I.; Linden, K. G. Rethinking the concepts of fluence (UV dose) and fluence rate: The importance of photon-based units – A systemic review. Photochem. Photobiol. 2015, 91, 1252–1262.
Bolton, J. R.; Stefan, M. I.; Shaw, P. S.; Lykke, K. R. Determination of the quantum yields of the potassium ferrioxalate and potassium iodide–iodate actinometers and a method for the calibration of radiometer detectors. J. Photochem. Photobiol., A 2011, 222, 166−169.
Borer, P.; Hug, S. J. Photo-redox reactions of dicarboxylates and α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR Spectroscopy. J. Colloid Interface Sci. 2014, 416, 44–53.
Breault, R. F.; Colman, J. A.; Aiken, G. R.; McKnight, D. Copper speciation and binding by organic matter in copper-contaminated streamwater. Environ. Sci. Technol. 1996, 30, 3477–3486.
Broxton, C. N.; He, B.; Bruno, V. M.; Culotta, V. C. A role for Candida albicans superoxide dismutase enzymes in glucose signaling. Biochem. Biophys. Res. Commun. 2018, 495, 814–820.
Buck, K. N.; Bruland, K.W. Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows. Mar. Chem. 2005, 96, 185–198.
Buerge-Weirich, D.; Sulzberger, B. Formation of Cu(I) in estuarine and marine waters: Application of a new solid-phase extraction method to measure Cu(I). Environ. Sci. Technol. 2004, 38, 1843–1848.
Buxton G. V.; Green J. C. Reactions of some simple α- and β-hydroxyalkyl radicals with Cu2+ and Cu+ ions in aqueous solution. J. Chem. Soc., Faraday Trans. 1 1978, 74, 697–714.
Cadet, J.; Douki, T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci. 2018, 17, 1816–1841.
Campos, C.; Guzmán, R.; López-Fernandez, E.; Casado, A. Evaluation of the copper(II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: The CUPRAC–BCS assay. Anal. Biochem. 2009, 392, 37–44.
Carballo, R.; Covelo, B.; Balboa, S.; Castiñeiras, A.; Niclós, J. Mixed‐ligand complexes of copper(II) with α‐hydroxycarboxylic acids and 1,10‐phenanthroline. Z. Anorg. Allg. Chem. 2001, 627, 948–954.
Chan, Y.-H.; Chen, J.; Liu, Q.; Wark, S. E.; Son, D. H.; Batteas, J. D. Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Anal. Chem. 2010, 82, 3671–3678.
Chang, W.-Y.; Wang, C.-Y.; Jan, J.-L.; Lo, Y.-S.; Wu, C.-H. Vortex-assisted liquid–liquid microextraction coupled with derivatization for the fluorometric determination of aliphatic amines. J. Chromatogr. A 2012, 1248, 41–47.
Chen, D.; Darabedian, N.; Li, Z.; Kai, T.; Jiang D.; Zhou, F. An improved Bathocuproine assay for accurate valence identification and quantification of copper bound by biomolecules. Anal. Biochem. 2016, 497, 27–35.
Chen, D.; Wang, X.; He, Y.; Kai, T.; Li, Z.; Xiang, J.; Jiang, D.; Zhou, F. Studies of electrode reactions and coordination geometries of Cu(I) and Cu(II) complexes with bicinchoninic acid. Electroanalysis 2018, 30, 479–485.
Chen, T.; Kitada, A.; Seki1, Y.; Fukami1, K.; Usmanov, D. T.; Chen, L. C.; Hiraoka, K.; Murase, K. Identification of copper (II)–lactate complexes in Cu2O electrodeposition baths: deprotonation of the α-hydroxyl group in highly concentrated alkaline solution. J. Electrochem. Soc. 2018, 165, D444–D451.
Chen, X.-Y.; Goff, G. S.; Ewing, W. C.; Scott, B. L.; Runde, W. Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with α-hydroxyisobutyric Acid. Inorg. Chem. 2012, 51, 13254–13263.
Chen, M.-Y. (2016). Effect of ligand structure on copper(I) quantum yields of copper(II)/amino-acid complexes. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Chiu, L.-W. (2012). Photoformation of ammonia from the photolysis of copper(II)-amino acid complexes in aqueous solution. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Cho, S. W.; Rao, A. S.; Bhunia, S.; Reo, Y. J.; Singha, S.; Ahn, K. H. Ratiometric fluorescence detection of Cu(II) with a keto-dipicolylamine ligand: A mechanistic implication. Sens. Actuators, B 2019, 279, 204–212.
Chu, Y.-H. (2017). Determination of linear aliphatic aldehydes in rice wines by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Ciamician, G.; Silber, P. Chemische Lichtwirkungen. Ber. Dtsch. Chem. Ges. 1901, 34, 2040−2046.
Cieśla, P.; Kocot, P.; Mytych, P.; Stasicka, Z. Homogeneous photocatalysis by transition metal complexes in the environment. J. Mol. Catal. A: Chem. 2004, 224, 17– 33.
Ciesienski, K. L.; Haas, K. L.; Dickens, M. G.; Tesema, Y. T.; Franz, K. J. A photolabile ligand for light-activated release of caged copper. J. Am. Chem. Soc. 2008, 130, 12246–12247.
Ciesienski, K. L.; Haas, K. L.; Franz, K. J. Development of next-generation photolabile copper cages with improved copper binding properties. Dalton Trans. 2010, 39, 9538–9546.
Coale, K. H.; Bruland, K. W. Copper complexation in the Northeast Pacific. Limnol. Oceanogr. 1988, 33, 1084–1101.
Cote, C. D.; Schneider, S. R.; Lyu, M.; Gao, S.; Gan, L.; Holod, A. J.; Chou, T. H. H.; Styler, S. A. Photochemical production of singlet oxygen by urban road dust. Cote et al., Environ. Sci. Technol. Lett. 2018, 5, 92–97.
Cottrell, B. A.; Gonsior, M.; Timko, S. A.; Simpson, A. J.; Cooper, W. J.; van der Veer, W. Photochemistry of marine and fresh waters: A role for copper-dissolved organic matter ligands. Mar. Chem. 2014, 162, 77–88.
Czégény, G.; Mátai, A.; Hideg, É. UV-B effects on leaves−Oxidative stress and acclimation in controlled environments. Plant Sci. 2016, 248, 57–63.
Dadashi-Silab, S.; Yagci, Y. Copper(II) thioxanthone carboxylate as a photoswitchable photocatalyst for photoinduced click chemistry. Tetrahedron Lett. 2015, 56, 6440–6443.
Das, S.; Johnson, G. R. A.; Nazhat, N. B.; Saadalla-Nazhat, R. Ligand decomposition in the photolysis of copper(II)–amino-acid complexes in aqueous solution. J. Chem. Soc., Faraday Trans. 1 1984, 80, 2759–2766.
Dai, Y.; Liu, Z.; Bai, Y.; Chen, Z.; Qin, J.; Feng, F. A novel highly fluorescent S, N, O co-doped carbon dots for biosensing and bioimaging of copper ions in live cells. RSC Adv. 2018, 8, 42246–42252.
De la Cruz, N.; Romero, V.; Dantas, R. F.; Marco, P.; Bayarri, B.; Giménez, J.; Esplugas, S. o-Nitrobenzaldehyde actinometry in the presence of suspended TiO2 for photocatalytic reactors. Catal. Today 2013, 209, 209−214.
Dhiman, S. B.; Naik, D. B. Pulse radiolysis studies on reactions of α-hydroxyalkyl radicals with nicotinamide and 6-methyl nicotinic acid. Radiat. Phys. Chem. 2012, 81, 635–641.
Dong, M.; Zheng, W.; Chen, Y.; Ran, B.; Qian, Z.; Jiang, X. Cu-T1 sensor for versatile analysis. Anal. Chem. 2018, 90, 2833–2838.
Donten, M. L.; Hamm, P.; VandeVondele, J. A consistent picture of the proton release mechanism of oNBA in water by ultrafast spectroscopy and ab initio molecular dynamics. J. Phys. Chem. B 2011, 115, 1075–1083.
Dulin, D.; Mill, T. Development and evaluation of sunlight actinometers. Environ. Sci. Technol. 1982, 16, 815–820.
Džeba, I.; Bonifačić, M.; Nikšić-Franjić, I.; Ljubić, I. Proton-coupled electron transfer is the dominant mechanism of reduction of haloacetates by the α-hydroxyethyl radical in aqueous media. Phys. Chem. Chem. Phys. 2018, 20, 19829–19840.
Faust, B. C. Experimental determination of molar absorptivities and quantum yields for individual complexes of a labile metal in dilute solution. Environ. Sci. Technol. 1996, 30, 1919–1922.
Ferraudi, G.; Muralidharan, S. Photochemical properties of copper complexes. Coord. Chem. Rev. 1981, 36, 45−88.
Fu, Y.; Pang, X.-X.; Wang, Z.-Q.; Chai, Q.; Ye, F. A highly sensitive and selective fluorescent probe for determination of Cu (II) and application in live cell imaging. Spectrochim. Acta A 2019, 208, 198–205.
Galbavy, E. S.; Ram, K.; Anastasio, C. 2-Nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry. J. Photochem. Photobiol., A 2010, 209, 186–192.
Gao, J.; Yin, J.; Tao, Z.; Liu, Y.; Lin, X.; Deng, J.; Wang, S. An ultrasensitive fluorescence sensor with simple operation for Cu2+ specific detection in drinking water. ACS Omega 2018, 3, 3045–3050.
Glazewski, R.; Morrison, G. M. Copper(I)/copper(II) reactions in an urban river. Sci. Total Environ. 1996, 189–190, 327–333.
Goldberg, M. C.; Cunningham, K. M.; Weiner, E. R. Aquatic photolysis: Photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions. J. Photochem. Photobiol., A 1993, 73, 105–120.
Goldstein, S.; Rabani, J. The ferrioxalate and iodide–iodate actinometers in the UV region. J. Photochem. Photobiol., A 2008, 193, 50−55.
González-Dávila, M.; Santana-Casiano, J. M.; Laglera, L. M. Copper adsorption in diatom cultures. Mar. Chem. 2000, 70, 161−170.
Grabo, J. E.; Trotta, S. M.; Baldwin, M. J. Minor changes in salicylidene/α-hydroxy acid-containing chelates cause major changes in structure and photochemistry of their Fe(III) complexes. Inorg. Chem. Commun. 2017, 84, 204–206.
Gu, D.; Zhang, P.; Zhang, L.; Liu, H.; Pu, Z.; Shang, S. Nitrogen and phosphorus co-doped carbon dots derived from lily bulbs for copper ion sensing and cell imaging. Opt. Mater. 2018, 83, 272–278.
Guan, Q.; Wang, F.; Xu, C; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197.
Gustafsson, J. P. MINTEQA2 version 4.0 and Visual MINTEQ version 3.0; Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH): Stockholm, Sweden, 2012.
Hänninen, K.; Niemelä, K. Alkaline degradation of peat humic acids. Part II. Identification of hydrophilic products. Acta Chem. Scand. 1992, 46, 459–463.
Hayase, K.; Zepp, R. G. Photolysis of copper(II)-amino acid complexes in water. Environ. Sci. Technol. 1991, 25, 1273–1279.
Hino, Y.; Yamazaki, M.; Kajii, H.; Ohmori, Y. Fabrication and characteristics of increased efficiency of layered polymeric electroluminescent diodes. Jpn. J. Appl. Phys. 2004, 43, 2315–2319.
Ho, S. S. H.; Chow, J. C.; Watson, J. G.; Ip, H. S. S.; Ho, K. F.; Dai, W. T.; Cao, J. Biases in ketone measurements using DNPH-coated solid sorbent cartridges. Anal. Methods 2014, 6, 967–974.
Horvath, O.; Stevenson, K. L. Charge Transfer Photochemistry of Coordination Compounds; VCH: New York,1993; pp 35–70.
Hsu, C.-S. (2003). Experimental determination of copper(I) quantum yields for copper(II)-amino acid complexes in aqueous solution. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Hua, X.; Cao, R.; Zhou, X.; Xu, Y. Integrated process for scalable bioproduction of glycolic acid from cell catalysis of ethylene glycol. Bioresour. Technol. 2018, 268, 402–407.
Hua, X.; Cao, R.; Zhou, X.; Xu, Y. Integrated process for scalable bioproduction of glycolic acid from cell catalysis of ethylene glycol. Bioresour. Technol. 2019, 273, 515–520.
Huang, X.; Wang, Y.; Li, X.; Guan, D.; Li, Y.; Zheng, X.; Zhao, M.; Shan, C.; Pan, B. Autocatalytic decomplexation of Cu(II)–EDTA and simultaneous removal of aqueous Cu(II) by UV/chlorine. Environ. Sci. Technol. 2019, 53, 2036–2044.
Hunt, P.; Worrall, D. R.; Wilkinson, F.; Batchelor S. N. Quantitative rate constants for the reaction of dyes and alkenes with α-hydroxyalkyl radicals, measured by laser flash photolysis. Photo. Photobiol. Sci. 2003, 2, 518–523.
Huston, P. L.; Pignatello, J. J. Reduction of perchloroalkanes by ferrioxalate-generated carboxylate radical preceding mineralization by the photo-Fenton reaction. Environ. Sci. Technol. 1996, 30, 3457–3463.
Isaeva, E. I.; Gorbunova, V. V. Formation of copper-containing particles on the quartz surface as a result of the photolysis of copper(II) complexes with amino acids. Russ. J. Gen. Chem. 2017, 87, 2852–2857.
James, B. R.; Williams, R. J. P. The oxidation–reduction potentials of some copper complexes. J. Chem. Soc. 1961, 2007–2019.
Jennah, O.; Beniazza, R.; Lozach, C.; Jardel, D.; Molton, F.; Duboc, C.; Buffeteau, T.; El Kadib, A.; Lastécouères, D.; Lahcini, M.; Vincent, J.-M. Photoredox catalysis at copper(II) on chitosan: Application to photolatent CuAAC. Adv. Synth. Catal. 2018, 360, 4615–4624.
Jin, L.-H.; Han, C.-S. Ultrasensitive and selective fluorimetric detection of copper ions using thiosulfate-involved quantum dots. Anal. Chem. 2014, 86, 7209–7213.
Karadaş, C.; Kara, D. Dispersive liquid–liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry. Food Chem. 2017, 220, 242–248.
Kim, H.-E.; Nguyen, T. T. M.; Lee, H.; Lee, C. Enhanced inactivation of Escherichia coli and MS2 coliphage by cupric ion in the presence of hydroxylamine: Dual microbicidal effects. Environ. Sci. Technol. 2015, 49, 14416–14423.
Kim, M.; Weinstock, I. A.; Geletii, Y. V.; Hill, C. L. Oxidation of reduced Keggin heteropolytungstates by dioxygen in water catalyzed by Cu(II). ACS Catal. 2015, 5, 7048–7054.
Kosobutskii, V. S. Structure and reactions of carbon-centered α-oxy(oxo)radicals. High Energy Chem. 2006, 40, 277–295.
Kumbhar, A. A.; Franks, A. T.; Butcher, R. J.; Franz, K. J. Light uncages a copper complex to induce nonapoptotic cell death. Chem. Commun. 2013, 49, 2460–2462.
Kunz, L. Y.; Diroll, B. T.; Wrasman, C. J.; Riscoe, A. R.; Majumdar, A.; Cargnello, M. Artificial inflation of apparent photocatalytic activity induced by catalyst-mass-normalization and a method to fairly compare heterojunction systems. Energy Environ. Sci. 2019, 12, 1657–1667.
Kusen, P. M.; Wandrey, G.; Krewald, V.; Holz, M.; Berstenhorst, S. M. Z.; Büchs, J.; Pietruszka, J. Light-controlled gene expression in yeast using photocaged Cu2+. J. Biotechnol. 2017, 258, 117–125.
Langford, C. H.; Wingham, M.; Sarstri, V. S. Ligand photooxidation in copper(II) complexes of nitrilotriacetic acid. Implications for natural waters. Environ. Sci. Technol. 1973, 7, 820−822.
Lappin, A. G.; Youngblood, M. P.; Margerum, D. W. Electron-transfer reactions of copper (I) and copper (III) complexes. Inorg. Chem. 1980, 19, 407–413.
Laroff, G. P.; Fessenden, R. W. Equilibrium and kinetics of the acid dissociation of several hydroxyalkyl radicals. J. Phys. Chem. 1973, 77, 1283–1288.
Laszakovits, J. R.; Berg, S. M.; Anderson, B. G.; O’Brien, J. E.; Wammer, K. H.; Sharpless, C. M. p-Nitroanisole/pyridine and p-nitroacetophenone/pyridine actinometers revisited: Quantum yield in comparison to Ferrioxalate. Environ. Sci. Technol. Lett. 2017, 4, 11–14.
Le Person, A.; Siampiringue, M.; Sarakha, M.; Moncomble, A.; Cornard, J. P. The photo-degradation of mesotrione, a triketone herbicide, in the presence of CuII ions. J. Photochem. Photobiol., A 2016, 315, 76–86.
Lee, H.-J.; Lee, H.; Lee, C. Degradation of diclofenac and carbamazepine by the copper(II)-catalyzed dark and photo-assisted Fenton-like systems. Chem. Eng. J. 2014, 245, 258–264.
Leopold, S.; Herranen, M.; Carlsson, J.-O.; Nyholm, L. In situ pH measurement of the self-oscillating Cu(II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor. J. Electroanal. Chem. 2003, 547, 45–52.
Levine, I. N. Physical chemistry; McGraw-Hill: New York, 2009.
Li, H.; Wang, X.; Cai, Z.; Lu, L.; Tao, J.; Sun, B.; Yang, Y.; Xu, Q.; Yu, Z.; Zhao, P. Ratiometric fluorescent sensing of copper ion based on chromaticity change strategy. Anal. Bioanal. Chem. 2017, 409, 6655–6662.
Li, Y.; Chen, C.; Zhang, J.; Lan, Y. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light. Chemosphere 2015, 127, 87–92.
Li, Y.; Chen, C.; Wu, Y.; Han, Y.; Lan, Y. Assessing the photocatalytic reduction of Cr(VI) by CuO in combination with different organic acids. Water Air Soil Pollut. 2017, 228, 363.
Li, Y.; Tang, L.; Ma, X.; Wang, X.; Zhou, W.; Bai, D. Synthesis and characterization of Zn-Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application. J. Phys. Chem. Solids 2017, 107, 62–67.
Lin, C.-J.; Hsu, C.-S.; Wang, P.-Y.; Lin, Y.-L.; Lo, Y.-S.; Wu, C.-H. Photochemical redox reactions of copper(II)–alanine complexes in aqueous solutions. Inorg. Chem. 2014, 53, 4934–4943.
Lin, J.-F. (2005). Electrochemical investigations of copper/amino-acid complexes by cyclic voltammetry. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Lin, Y.-L. (2005). Determination of aldehyde from the photolysis of Cu(II)/amino acid complexes in aqueous solution. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Lin, Y.-L.; Wang, P.-Y.; Hsieh, L.-L.; Ku, K.-H.; Yeh, Y.-T.; Wu, C.-H. Determination of linear aliphatic aldehydes in heavy metal containing waters by high performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization. J. Chromatogr. A 2009, 1216, 6377–6381.
Lin, T.-Y.; Pan, Y.-T.; Lee, H.-Y.; Wang, P.-Y.; Wu, C.-H. Markedly enhanced purge-and-trap performance and efficiency for the determination of ammonium ion in high-salinity water samples. J. Chin. Chem. Soc. 2012, 59, 718–726.
Liu, G.; Peng, J.; Zheng, H.; Yuan, D. Developing on-site paper colorimetric monitoring technique for quick evaluating copper ion concentration in mineral wastewater. Spectrochim. Acta A 2018, 196, 392–397.
Liu, L.; Pilles, B. M.; Gontcharov, J.; Bucher, D. B.; Zinth, W. Quantum yield of cyclobutane pyrimidine dimer formation via the triplet channel determined by photosensitization. J. Phys. Chem. B 2016, 120, 292–298.
Liu, Y.; Wu, Y.; Guo, X.; Wen, Y.; Yang, H. Rapid and selective detection of trace Cu2+ by accumulation-reaction-based Raman spectroscopy. Sens. Actuators, B 2019, 283, 278–283.
Liu, Y.-J. (2018). The role of the hydroxyl group on the photoreactivity of copper(II) complexes in aqueous solution. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Losev, V. N.; Didukh, S. L.; Trofimchuk, A. K.; Zaporozhets, O. A. Adsorption–photometric and test determination of copper using silica gel sequentially modified with polyhexamethylene guanidine and bathocuproinedisulphonic acid. Adsorpt. Sci. Technol. 2014, 32, 443–452.
Lu, Z.; Challis, J. K.; Wong, C. S. Quantum yields for direct photolysis of neonicotinoid insecticides in water: Implications for exposure to nontarget aquatic organisms. Environ. Sci. Technol. Lett. 2015, 2, 188–192.
Lui, K. H.; Ho, S. S. H.; Louie, P. K. K.; Chan, C. S.; Lee, S. C.; Hu, D.; Chan, P. W.; Lee, J. C. W.; Ho, K. F. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air. Atmos. Environ. 2017, 152, 51–60.
Ma, X.; Tan, Z.; Wei, G.; Wei, D.; Du, Y. Solvent controlled sugar–rhodamine fluorescence sensor for Cu2+ detection. Analyst 2012, 137, 1436–1439.
Malek, A.; Prasad, E.; Thomas, T. Synthesis of stable Al(0) nanoparticles in water in the form of Al(0)@Cu and sequestration of Cu2+(aq) with simultaneous H2 production. ACS Sustainable Chem. Eng. 2019, 7, 10332–10339.
Markiewicz, G.; Walczak, A.; Perlitius, F.; Piasecka, M.; Harrowfield, J. M.; Stefankiewicz, A. R. Photoswitchable transition metal complexes with azobenzene-functionalized imine-based ligands: structural and kinetic analysis. Dalton Trans. 2018, 47, 14254–14262.
Martell, A. E.; Smith, R. M.; Motekaitis, R. J. NIST Standard Reference Database 46: NIST Critically Selected Stability Constants of Metal Complexes, Version 7.0; NIST: Gaithersburg, MD, 2003.
Matsushima, R., Ichikawa, Y., and Kuwabara, K. Photooxidation of 2-hydroxy acids by copper(II) species in aqueous solution. Bull. Chem. Soc. Jpn. 1980, 53, 1902–1907.
McGoorty, M. M.; Singh, A.; Deaton, T. A. Peterson, B.; Taliaferro, C. M. Yingling, Y. G.; Castellano, F. N. Bathophenanthroline disulfonate ligand-induced self-assembly of Ir(III) complexes in water: An intriguing class of photoluminescent soft materials. ACS Omega 2018, 3, 14027–14038.
Moffett, J. W.; Zika, R. G.; Petasne, R. G. Evaluation of bathocuproine for the spectro-photometric determination of copper(I) in copper redox studies with applications in studies of natural waters. Anal. Chim. Acta 1985, 175, 171–179.
Moffett, J. W.; Zika, R. G. In Photochemistry of Environmental Aquatic Systems; Zika, R. G., Cooper, W. J., Eds.; Am. Chem. Soc. Symp. Ser. 327; 1987; pp 116–130.
Moffett, J. W.; Zika, R. G. Measurement of copper(I) in surface waters of the subtropical Atlantic and Gulf of Mexico. Geochim. Cosmochim. Acta 1988, 52, 1849–1857.
Morimoto, J. Y.; DeGraff, B. A. Photochemistry of the copper(II)-malonate system. Sensitized reaction. J. Phys. Chem. 1972, 76, 1387−1388.
Morimoto, J. Y.; DeGraff, B. A. Photochemistry of copper complexes. Copper(II) malonate system. J. Phys. Chem. 1975, 79, 326−331.
Moss, M.; Mellon, M. Colorimetric determination of copper with 1,10-phenanthroline. Ind. Eng. Chem. Anal. Ed. 1943, 15, 116–118.
Namasivayam, C.; Natarajan, P. Photopolymerization reactions initiated by copper (II)–amino acid chelates: Investigation of the initiating species by flash photolysis. I. J. Polym. Sci., Polym. Chem. Ed. 1983, 21, 1371–1384.
Nason, J. A.; Sprick, M. S.; Bloomquist, D. J. Determination of copper speciation in highway stormwater runoff using competitive ligand exchange–Adsorptive cathodic stripping voltammetry. Water Res. 2012, 46, 5788–5798.
Natarajan, P.; Ferraudi, G. Photochemical properties of copper(II)-amino acid complexes. Inorg. Chem. 1981, 20, 3708–3712.
Ndungu, K. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry. Environ. Sci. Technol. 2012, 46, 7644–7652.
Nguyen, T. T. M.; Park, H.-J.; Kim, J. Y.; Kim, H.-E.; Lee, H.; Yoon, J.; Lee, C. Microbial inactivation by cupric ion in combination with H2O2: Role of reactive oxidants. Environ. Sci. Technol. 2013, 47, 13661–13667.
Osherov, A.; Zhu, C. Q.; Panzer, M. J. Role of solution chemistry in determining the morphology and photoconductivity of electrodeposited cuprous oxide films. Chem. Mater. 2013, 25, 692–698.
Owczarek, A.; Safro, M.; Wolfson, A. D. Enzymatic tRNA acylation by acid and α-hydroxy acid analogues of amino acids. Biochemistry 2008, 47, 301–307.
Ozdemir, M. A novel chromogenic molecular sensing platform for highly sensitive and selective detection of Cu2+ ions in aqueous environment. J. Photochem. Photobiol., A 2019, 369, 54–69.
Packer, J. E.; Willson, R. L.; Bahnemann, D.; Asmus, K.-D. Electron transfer reactions of halogenated aliphatic peroxyl radicals: Measurement of absolute rate constants by pulse radiolysis. J. Chem. Soc. Perkin Trans. 2 1980, 296–299.
Palmer, F. B.; Butler, C. A.; Timperley, M. H.; Evans, C. W. Toxicity to embryo and adult zebrafish of copper complexes with two malonic acids as models for dissolved organic matter. Environ. Toxicol. Chem. 1998, 17, 1538–1545.
Pan, Y.; Garg, S.; Waite, T. D.; Yang, X. Copper inhibition of triplet-induced reactions involving natural organic matter. Environ. Sci. Technol. 2018, 52, 2742–2750.
Pham, A. N.; Rose, A. L.; Waite, T. D. Kinetics of Cu(II) reduction by natural organic matter. J. Phys. Chem. A 2012, 116, 6590–6599.
Piccirillo, C.; Fernández-Arias, M.; Boutinguiza, M.; Tobaldi, D. M.; del Val, J.; Pintado, M. M.; Pou, J. Increased UV absorption properties of natural hydroxyapatite‐based sunscreen through laser ablation modification in liquid. J. Am. Ceram. Soc. 2019, 102, 3163–3174.
Piispanen, J.; Lajunen, L. H. J. Complex formation equilibria of some aliphatic α-hydroxycarboxylic acids. 2. The study of copper(II) complexes. Acta Chem. Scand. 1995, 49, 241–247.
Pitts, J. N.; Vernon, J. M.; Wan, J. K. S. A rapid actinometer for photochemical air pollution studies. Int. J. Air Water Pollut. 1965, 9, 595−600.
Rijkenberg, M. J. A.; Fischer, A. C.; Kroon, J. J.; Gerringa, L. J. A.; Timmermans, K. R.; Wolterbeek, H. T.; de Baar, H. J. W. The influence of UV irradiation on the photoreduction of iron in the Southern Ocean. Mar. Chem. 2005, 93, 119–129.
Sasaki, Y.; Iwamoto, S.; Mukai, M.; Kikuchi, J. Photo- and thermo-responsive assembly of liposomal membranes triggered by a gemini peptide lipid as a molecular switch. J. Photochem. Photobiol., A 2006, 183, 309–314.
Schwarz, H. A.; Dodson, R. W. Reduction Potentials of CO2– and the Alcohol Radicals. J. Phys. Chem. 1989, 93, 409–414.
Semeniuk, D. M.; Bundy, R. M.; Payne, C. D.; Barbeau, K. A.; Maldonado, M. T. Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Mar. Chem. 2015, 173, 222–233.
Sen Gupta, K. K.; Pal, B.; Sen, P. K. Kinetics and mechanism of the oxidation of some α‐hydroxy acids by tetrachloroaurate(III) in acetic acid‐sodium acetate buffer medium. Int. J. Chem. Kinet. 1999, 31, 873–882.
Shankar, R.; Shim, W. J.; An, J. G.; Yim, U. H. A practical review on photooxidation of crude oil: Laboratory lamp setup and factors affecting it. Water Res. 2015, 68, 304–315.
Shan, C.; Xu, Z.; Zhang, X.; Xu, Y.; Gao, G.; Pan, B. Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II). Chemosphere 2018, 193, 1235–1242.
Silvan, J. M.; Reguero, M.; de Pascual-Teresa, S. A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. Food Funct. 2016, 7, 1067–1076.
Smith, G. F.; McCurdy, W. H. 2,9-Dimethyl-1,10-phenanthroline. Anal. Chem. 1952, 24, 371–373.
Smith, G. F.; Wilkins, D. H. New colorimetric reagent specific for cooper. Anal. Chem. 1953, 25, 510–511.
Sovic, D. M.; Lester, L. R.; Murray, E. E.; Cohenford, M. A. The utilization of bathocuproinedisulfonic acid as a reagent for determining D-glucose and D-galactose levels in glycoconjugates. Bioorg. Chem. 2008, 36, 98–102.
Sun, L.; Wu, C.-H.; Faust, B. C. Photochemical redox reactions of inner-sphere copper(II)-dicarboxylate complexes: Effects of the dicarboxylate ligand structure on copper(I) quantum yields. J. Phys. Chem. A 1998, 102, 8664–8672.
Sun, X.; Liu, H.; Zhang, Y.; Zhao, Y.; Quan, X. Effects of Cu(II) and humic acid on atrazine photodegradation. J. Environ. Sci. 2011, 23, 773–777.
Sun, X.; Zou. Y.; Jiang, J. Surface plasmon resonances enhanced click chemistry through synergistic photothermal and hot electron effects. Chem. Commun. 2019, 55, 4813–4816.
Sun, Y.; Wei, M.; Liu, R.; Wang, H.; Li, H.; Kang, Q.; Shen, D. A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore. Talanta 2019, 194, 452–460.
Sýkora, J. Photochemistry of copper complexes and their environmental aspects. Coord. Chem. Rev. 1997, 159, 95–108.
Takaya, M.; Inoue, N. Reactivity and relative reaction rates of formaldehyde, acetaldehyde, and acetone coexisting with large quantities of acetone on 2,4-dinitrophenylhydrazine-impregnated filters. Anal. Methods 2019, 11, 2785–2789.
Tang, P.; Jiang, W.; Lyu, S.; Brusseau, M. L.; Xue, Y.; Qiu, Z.; Sui, Q. Mechanism of carbon tetrachloride reduction in ferrous ion activated calcium peroxide system in the presence of methanol. Chem. Eng. J. 2019, 362, 243–250.
Tasdelen, M. A.; Uygun, M.; Yagci, Y. Photoinduced controlled radical polymerization in methanol. Macromol. Chem. Phys. 2010, 211, 2271–2275.
Tasdelen, M. A.; Uygun, M.; Yagci, Y. Photoinduced controlled radical polymerization. Macromol. Rapid Commun. 2011, 32, 58–62.
Tasdelen, M. A.; Yagci, Y. Light‐induced click reactions. Angew. Chem., Int. Ed. 2013, 52, 5930–5938.
Tian, M.-Z.; Hu, M.-M.; Fan, J.-L.; Peng, X.-J.; Wang, J.-Y.; Sun, S.-G.; Zhang, R. Rhodamine-based ‘turn-on’ fluorescent probe for Cu(II) and its fluorescence imaging in living cells. Bioorg. Med. Chem. Lett. 2013, 23, 2916–2919.
Tisato, F.; Marzano, C.; Peruzzo, V.; Tegoni, M.; Giorgetti, M.; Damjanovic, M.; Trapananti, A.; Bagno, A.; Santini, C.; Pellei, M.; Porchia, M.; Gandin, V. Insights into the cytotoxic activity of the phosphane copper(I) complex [Cu(thp)4][PF6]. J. Inorg. Biochem. 2016, 165, 80–91.
Uchiyama, S.; Ando, M.; Aoyagi, S. Isomerization of aldehyde-2,4-dinitrophenylhydrazone derivatives and validation of high-performance liquid chromatographic analysis. J. Chromatogr. A 2003, 996, 95–102.
Uchiyama, S.; Kaneko, T.; Tokunaga, H.; Ando, M.; Otsubo, Y. Acid-catalyzed isomerization and decomposition of ketone-2,4-dinitrophenylhydrazones. Anal. Chim. Acta 2007, 605, 198–204.
Vrijsen, J. H.; Medeiros, C. O.; Gruber, J.; Junkers, T. Continuous flow synthesis of core cross-linked star polymers via photo-induced copper mediated polymerization. Polym. Chem. 2019, 10, 1591–1598.
Walsh, M. J.; Ahner, B. A. Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes. J. Inorg. Biochem. 2013, 128, 112–123.
Walsh, M. J.; Goodnow, S. D.; Vezeau, G. E.; Richter, L. V.; Ahner, B. A. Cysteine enhances bioavailability of copper to marine phytoplankton. Environ. Sci. Technol. 2015, 49, 12145–12152.
Wan, D.; Sharma, V. K.; Liu, L.; Zuo, Y.; Chen, Y. Mechanistic insight into the effect of metal ions on photogeneration of reactive species from dissolved organic matter. Environ. Sci. Technol. 2019, 53, 5778–5786.
Wang, P.-Y. (2004). Determination of ammonium ion and amines in the photolysis of Cu(II)-amino acid complexes in aqueous solution. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Wang, P.-Y.; Wu, J.-Y.; Chen, H.-J.; Lin, T.-Y.; Wu, C.-H. Purge-and-trap ion chromatography for the determination of trace ammonium ion in high-salinity water samples. J. Chromatogr. A 2008, 1188, 69–74.
Wang, Y.; Wu, M.; Yu, S.; Jiang, C. Semi-quantitative and visual assay of copper ions by fluorescent test paper constructed with dual-emission carbon dots. RSC Adv. 2018, 8, 12708–12713.
Wang, Y.; Zhang, C.; Chen, X.; Yang, B.; Yang, L.; Jiang, C.; Zhong, Z. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots–quantum dots for the visual determination of copper ions. Nanoscale 2016, 8, 5977–5984.
Wardle, B. Principles and Applications of Photochemistry; Wiley: New York, 2009.
Wei, P.; Zhu, Z.; Song, R.; Li, Z.; Chen, C. An ion-imprinted sensor based on chitosan-graphene oxide composite polymer modified glassy carbon electrode for environmental sensing application. Electrochim. Acta 2019, 317, 93–101.
Witt, M. L. I.; Skrabal, S.; Kieber, R.; Willey, J. Photochemistry of Cu complexed with chromophoric dissolved organic matter: Implications for Cu speciation in rainwater. J. Atmos. Chem. 2007, 58, 89–109.
Wong, J. P. S.; Nenes, A.; Weber, R. J. Changes in light absorptivity of molecular weight separated brown carbon due to photolytic aging. Environ. Sci. Technol. 2017, 51, 8414–8421.
Wong, K. H.; Obata, H.; Kim, T.; Mashio, A. S.; Fukuda, H.; Ogawa, H. Organic complexation of copper in estuarine waters: An assessment of the multi-detection window approach. Mar. Chem. 2018, 204, 144–151.
Wong, K. H.; Obata, H.; Kim, T.; Wakuta, Y.; Takeda, S. Distribution and speciation of copper and its relationship with FDOM in the East China Sea. Mar. Chem. 2019, 212, 96–107.
Wu, C.-H.; Sun, L.; Faust, B. C. Photochemical formation of copper(I) from copper(II)-dicarboxylate complexes: Effects of outer-sphere versus inner-sphere coordination and of quenching by malonate. J. Phys. Chem. A 2000, 104, 4989–4996.
Wu, F.; Tanoue, E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters. Environ. Sci. Technol. 2001, 35, 3646–3652.
Wu, H.-J.; Tomiyama, N.; Nagai, H.; Sato, M. Fabrication of a p-type Cu2O thin-film via UV-irradiation of a patternable molecular-precursor film containing Cu(II) complexes. J. Cryst. Growth 2019, 509, 112–117.
Wu, J.-Y. (2005). Determination of ammonia from the photolysis of Cu(II)-amino acid complexes in aqueous solution. Unpublished master’s thesis, National Tsing Hua University, Hsinchu.
Xue, H.; Gonçalves, M. L. S.; Reutlinger, M.; Sigg, L.; Stumm, W. Copper(I) in fogwater: Determination and interactions with sulfite. Environ. Sci. Technol. 1991, 25, 1716–1722.
Xu, L.; Yang, X.; Zhang, A.; Yang, H. Progress in photochemistry of copper in aquatic systems. Prog. Chem. 2005, 17, 412–416.
Yadav, P.; Rao, B. S. M.; Batchelor, S. N.; O’Neill, P. From alcohols to sugars–how does the reactivity of α-hydroxyalkyl radicals change with structure? A quantitative examination by pulse radiolysis. J. Phys. Chem. A 2005, 109, 2039–2042.
Yang, F.; Yue, Y.-J.; Cao, Z.-F.; Wang, J.; Wang, S.; Zhong, H. In-situ improvement of structural stability of Si-Zn mesoporous materials and enhancing Cu2+ ions removal. Colloids Surf., A 2019, 568, 319–326.
Yang, S.; Guo, W.; Sun, X. Electrostatic association complex of a polymer capped CdTe(S) quantum dot and a small molecule dye as a robust ratiometric fluorescence probe of copper ions. Dyes Pigm. 2018, 158, 114–120.
Yoshimura, K.; Matsuoka, S.; Inokura, Y.; Hase, U. Flow analysis for trace amounts of copper by ion-exchanger phase absorptiometry with 4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline disulphonate and its application to the study of karst groundwater storm runoff. Anal. Chim. Acta 1992, 268, 225–233.
Yuan, X.; Pham, A. N.; Xing, G.; Rose, A. L.; Waite, T. D. Effects of pH, Chloride, and Bicarbonate on Cu(I) Oxidation Kinetics at Circumneutral pH. Environ. Sci. Technol. 2012, 46, 1527–1535.
Yuan, X.; Pham, A. N.; Miller, C. J.; Waite, T. D. Copper-catalyzed hydroquinone oxidation and associated redox cycling of copper under conditions typical of natural saline waters. Environ. Sci. Technol. 2013, 47, 8355–8364.
Zak, B. Simple procedure for the single sample determination of serum copper and iron. Clin. Chim. Acta 1958, 3, 328–334.
Zhao, Y.; Liu, C.; Zhang, H.; Wang, X.; Chen, L.; Li, Y. Separation and resolution of enantiomeric α-hydroxy acids by chiral ligand-exchange capillary electrophoresis. Chin. J. Anal. Chem. 2005, 33, 955–957.
Zhang, B.; Diao, Q.; Ma, P.; Liu, X.; Song, D.; Wang, X. A sensitive fluorescent probe for Cu2+ based on rhodamine B derivatives and its application to drinking water examination and living cells imaging. Sens. Actuators, B 2016, 225, 579–585.
Zhang, H.; Meng, G.; Mao, F.; Li, W.; He, Y.; Gin, K. Y.-H.; Ong, C. N. Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa. J. Hazard. Mater. 2019, 367, 120–127.
Zhang, L.; Wu, B.; Zhang, G.; Gan, Y.; Zhang, S. Enhanced decomplexation of Cu(II)-EDTA: The role of acetylacetone in Cu-mediated photo-Fenton reactions. Chem. Eng. J. 2019, 358, 1218–1226.
Zhou, X.; Huang, G.; Civerolo, K.; Schwab, J. Measurement of atmospheric hydroxyacetone, glycolaldehyde, and formaldehyde. Environ. Sci. Technol. 2009, 43, 2753–2759.
Zhu, Y.; Kieber, D. J. Wavelength- and temperature-dependent apparent quantum yields for photochemical production of carbonyl compounds in the North Pacific Ocean. Environ. Sci. Technol. 2018, 52, 1929–1939.
Zitoun, R.; Clearwater, S. J.; Hassler, C.; Thompson, K. J.; Albert, A.; Sander, S. G. Copper toxicity to blue mussel embryos (Mytilus galloprovincialis): The effect of natural dissolved organic matter on copper toxicity in estuarine waters. Sci. Total Environ. 2019, 653, 300–314.