研究生: |
張立穎 Li-Ying Chang |
---|---|
論文名稱: |
針對數位控制脈寬調變轉換器於運算時間延遲之相位領前補償方法 Phase Advance Compensation for Computational Time Delay of a Digital Controlled PWM Converter |
指導教授: |
鄭博泰
Po-Tai Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 轉換器 、主動濾波 、能量回生 、時間延遲 、數位信號處理器 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於數位信號處理器對於實現複雜控制法及程式撰寫的便利性,許多電力電子之應用皆偏好使用數位信號處理器來實現控制法。然而數位信號處理器所伴隨的時間延遲卻使得控制法在實現上有未盡理想之處。以並聯式主動濾波器為例,其濾波效果之優劣主要取決於電流控制的能力,若以數位信號處理器來實現其電流控制法,則所造成的時間延遲勢必降低電流的追隨性能,進而影響整體濾波的效果。因此,關於數位信號處理器時間延遲之研究遂成為一重要課題。
目前在各式電流控制法中,以預測電流調節器最常應用於並聯式主動濾波器,其對諧波電流的追隨性能及定頻操作為其最大優點。因此本文特針對數位控制器的時間延遲對預測電流調節器所產生的影響加以研究及提出補償方法,並以電腦模擬及實驗測試結果來驗證本文所提之控制
Recently, many power electronics applications use digital signal processors for control implementation because of their advantages in handling complex mathematics operations and easy programming. However, the inherent time delay of the digital signal processor deteriorates its control performance. For example, the filtering capability of the shunt active filter highly depends on the current control capability. The time delay of the digital signal processor reduces the current tracking capability and harmonic compensation performance. Thus, the research on the time delay of the digital controller becomes an issue.
The predictive current regulator is often used for shunt active filters because it has the advantages of high current tracking capability and fixed switching frequency operation. This thesis studies the effect of the time-delay caused by digital controllers on the predictive current regulator, and proposes a compensation method. Computer simulation and laboratory test results are presented to validate the functionalities of the proposed method.
[1] M. El-Habrouk, M.K. Darwish, and P. Mehta, “Active Power Filters: A Review,” IEE Proceedings-Electric power applications, vo1. 147, pp.
403-413, 2000.
[2] H. Akagi, “New Trends in Active Filters for Power Conditioning,” IEEE
Transactions on Industry Applications, vo1. 32, pp. 1312-1322, 1996.
[3] .S. Bhattacharya and D. Divan, “Active Filter Solutions for Utility
Interface of Industrial Loads,” Proceedings of the 1996 International
Conference on Power Electronics, Drives and Energy Systems for
Industrial Growth, 1996, vo1. 2, pp. 1078-1084, 1996.
[4] B. Singh, K. Al-Haddad, and A. Chandra, “A Review of Active Filters
for Power Quality Improvement,” IEEE Transactions on Industrial
Electronics, vo1. 46, pp. 960-971, 1999.
[5] J. Zeng, O. Diao, Y. Ni, S. Cheng, and B. Zhang, “A Novel Current
Controller for Active Power Filter Based On Optimal Voltage Space
Vector,” IEEE Conference on Power Electronics and Motion Control,
vo1. 2, pp. 686-691, 2000.
[6] .D. M. Brod and D. W. Novonty, “Current Control of VSI-PWM
Inverters,” IEEE Transactions on Industry Applications, vo1. IA-21, pp.
562-570, 1985.
[7]T.T. G. Habetler, “A Space Vector-based Rectifier Regulator for AC/DC/AC
Converters,” IEEE Transactions on Power Electronics, vo1. 8, pp. 30-36,
1993.
[8] P. Jintakosonwit, H. Fujita, and H. Akagi, “Control and Performance of a
Fully-Digital-Controlled Shunt Active Filter for Installation on a Power
Distribution System,” IEEE Transactions on Power Electronics, vo1. 17,
pp. 132-140, 2002.
[9] S. Hamasaki and A. Kawamura, “Improvement of Current Regulation of
Line-Current-Detection-Type Active Filter based on Deadbeat Control,”
IEEE Transactions on Industry Applications, vo1. 39, pp. 536-541, 2003.
[10] O. Kukrer, “Discrete-Time Current Control of Voltage-Fed Three-Phase
PWM Inverters,” IEEE Transactions on Power Electronics, vo1. 11, pp.
260-269, 1996.
[11] W. C. Lee, D. S. Hyun, and T. K. Lee, “A Novel Control Method for
Three-Phase PWM Rectifiers Using a Single Current Sensor,” IEEE
Transactions on Power Electronics, vo1. 15, pp. 861-870, 2000.
[12] S. G. Jeong and M. H. Woo, “DSP-Based Active Power Filter with
Predictive Current Control,” IEEE Transactions on Industrial
Electronics, vo1. 44, pp. 329-336, 1997.
[13] H. T. Moon, H. S. Kim, and M. J. Youn, “A Discrete-Time Predictive
Current Control for PMSM,” IEEE Transactions on Power Electronics,
vo1. 18, pp. 464-472, 2003.
[14] H. R. Hur, J. M. Lee, S. Lee, and M. H. Lee, “Compensation of Time
Delay Using a Predictive Controller,” Proceedings of the IEEE
International Symposium on Industrial Electronics, 1999, vo1. 3, pp.
1087-1092, 1999.
[15] V. Blasko and V. Kaura, “A Novel Control to Actively Damp Resonance
in Input LC Filter of a Three-Phase Voltage Source Converter,” IEEE
Transactions on Industry Applications, vo1. 33, pp. 542-550, 1997.
[16] D. Raviv and E. W. Djaja, “ Technique for Enhancing the Performance of
Discretized Controllers,” IEEE Control Systems Magazine, vol. 19, pp.
52-57, 1999.
[17] P. Katz, Digital Control Using Microprocessors, Technion-Israel Institute
of Technology, 1986.
[18] S. Bibian and H. Jin, “Time Delay Compensation of Digital Control for
DC Switchmode Power Supplies Using Prediction Techniques,” IEEE
Transactions on Power Electronics, vol. 15, pp. 835-842, 2000.
[19] B. H. Bae and S. K. Sul, “A Compensation Method for Time Delay of
Full-Digital Synchronous Frame Current Regulator of PWM AC
Drives,” IEEE Transactions on Industry Applications, vol. 39, pp.
802-810, 2003.
[20] Jian-Shen Li, Design and Implementation of an Auxiliary IGBT
Converter for Conventional Diode Rectifier Front-ends, Master Thesis,
Department of Electrical Engineering, National Tsing Hua University,
ROC, 2003.
[21] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics:
Converters, Applications and Design, New York: John Wiley & Sons,
1997.