研究生: |
賴致瑋 Lai, Ji-Wei |
---|---|
論文名稱: |
利用電子迴旋共振化學氣相沉積法成長單層石墨與單層石墨的 P 型摻雜 Growth of Graphene Layers by Electron Cyclotron Resonance Chemical Vapor Deposition and P-type Doping Graphene |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 低維度奈米結構 、單層石墨 、電子迴旋共振化學氣相沉積法 、常壓化學氣相沉積法 、P 型摻雜 |
外文關鍵詞: | low-dimensional structure, graphene, electron cyclotron resonance chemical vapor deposition, ECR-CVD, atmosphere pressure chemical vapor deposition, APCVD, P-type doping |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今的積體電路設計強調元件持續縮小化的前提下,微影技術面臨許多發展的瓶頸,在元件的閘極長度 (gate length) 縮小至數十奈米的情況,產生了許多難以控制的物理現象。由上而下 (top-down) 的傳統縮小方式漸漸得無法突破極限,而直接成長奈米結構的材料被視為下一世代半導體技術成為了主要的課題。例如: 奈米碳管 (carbon nanotubes)、奈米線 (nanowires),或是近年來十分熱門的單層石墨 (graphene) 等低維度 (low-dimension) 奈米結構,將這些奈米結構由下而上 (bottom-up) 的建構技術去構成電子元件,是科學家基極研究發展的目標。單層石墨銜接了奈米碳管的研究基礎外,主要是其在自然界中目前唯一能夠找到穩定存在的單一原已層的二維電子系統,具有獨特的電子能帶結構給予科學界一個未知領域去探索,因此也提供了奈米電子領域一個嶄新的思考方向。
目前製備單層石墨的方法從最耗時且須大量人力的機械剝離 (mechanical exfoliation) 方式,進步到現在的化學氣相沉積法 (chemical vapor deposition, CVD),以銅箔 (copper foil) 、鎳薄膜 (Ni thin film)以及鎳錠 (Ni pillar) 發展出簡單快速的單層石墨成長技術,且逐漸地改善問題,成長出高品質的單層或雙層石墨,以符合現今業界晶圓尺寸大小的半導體製程為主,而利用化學氣相沉積法仍需要改善一些問題,例如,碳源氣體需要高的裂解溫度、大流量的反應氣體以及需要在高真空下成長的環境以降低薄膜的不均勻性等。
因此本論文將以化學氣相沉積法為基礎,發展以電子迴旋共振化學氣相沉積系統去成長單層石墨,在高真空下促進化學反應速率,此系統具有成熟、可靠,快速、良好的緻密度與覆蓋性薄膜品質,以符合業界上的運用。
成長的過程中,調變許多不同的成長參數,成長在銅催化劑上。為了瞭解成長後的石墨狀況,我們將成長後的石墨轉移至不同的基板上,利用不同的分析儀器,像是拉曼光譜分析、片電阻量測分析、光穿透率分析等來幫助我們進行研究,接著利用微波加熱單層石墨下方的碳化矽基板進行高溫退火處理以及氬氣電漿處理,去降低在成長時,去修復電漿對單層石墨晶格造成的缺陷和減少在成長時無法避免的非晶質碳的產生進而改善片電阻值和光穿透率等,去改善我們的製程,盡可能的把影響石墨品質的因素減到最低。
另外,本論文也嘗試利用化學氣相沉積法去摻雜單層石墨,首先利用機械剝離或 CVD 的方式去得單層石墨後,在完美的單層石墨晶格中以氬氣電漿處裡去製造缺陷,破壞晶格結構的對稱性,使單層石墨碳原子產生斷鍵,進而使用 CVD 通入摻雜物或摻雜氣體,使摻雜原子或分子與單層石墨的缺陷位置上產生鍵結,最後形成 P 型半導體,而選擇的 P 型摻雜物以氧化硼 (boron oxide, B2O3) 和二硼烷 (diborane, B2H6) 為主,最後利用拉曼光譜去簡單的推測摻雜的濃度與 X 光光電子能譜分析,觀察這些摻雜物與單層石墨的碳原子鍵結的狀況。此過程與矽製程相似,都是利用摻雜的方式,改變單層石墨成為 N 型或 P 型特性,使之有機會能夠應用在半導體科技上,進而使單層石墨變為主流的材料去取代矽製程。
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor tridoe”, Phys. Rev., vol. 74, p. 230, 1948.
[2] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, vol. 363, p. 603, 1993.
[3] M. I. Katsnelson, “Graphene: carbon in two dimensions”, Mater. Today, vol. 10, p. 20, 2007.
[4] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, vol. 363, p. 605, 1993.
[5] S. Iijima, “Helical microtubules of graphite carbon”, Nature, vol. 354, p. 56, 1991.
[6] K.-T. Lau and D. Hu, “The revolutionary creation of new advanced materials carbon nanotube composites”, Composites : Part B, vol. 32, p. 263, 2002.
[7] T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett., vol. 243, p. 49, 1995.
[8] L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W.Y. Zhou, G. Wang, L. X. Qian and S.S. Xie, “Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition”, Appl. Phys. Lett., vol. 74, p. 644, 1999.
[9] A. P. Graham, G.S. Duesberg, R. V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl and W. Hoenlein, “Carbon nanotubes for microelectronics”, Small, vol. 4, p. 382, 2005.
[10] R. Martel, T. Schmidt, H. R. Shea, T. Hertel and P. Avouris, “Single- and multi-wall carbon nanotube field effect transistor”, Appl. Phys. Lett., vol. 73, p. 2447, 1998.
[11] S. J. Tans, A. R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, vol. 393, p. 49, 1998.
[12] 成會明,”奈米碳管”,2006.
[13] J. Svensson, A. A Sourab, Y. Tarakanov, D. S. Lee, S. J. Park, S. J. Baek, Y. W. Park and E. E B Campbell, “The dependence of the Schottky barrier height on carbon nanotube diameter for Pd–carbon nanotube contacts “, Nanotech., vol. 20, p.175204, 2009.
[14] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature, vol. 391, p. 59, 1998.
[15] M.I. Katsnelson and K.S. Novoselov, “Graphene: New bridge between condensed matter physics and quantum electrodynamics”, Sol. Stat. Commun., vol. 143, p. 3, 2007.
[16] M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite “, Advan. Phys., vol. 51, p. 1, 2002.
[17] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, {Science, vol. 306, p. 666-669, 2004.
[18] J. Hass, W. A. de Heer and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, J. Phys.: Condens. Matter, vol. 20, p. 323202, 2008.
[19] D. D. L.Chung, “Review graphite”, J. Mater. Sci., vol. 37, p. 1475, 2002.
[20] S. Latil and L. Henrard, “Charge Carriers in Few-Layer Graphene Films”, Phys. Rev. Lett., vol. 97, p. 036803, 2006.
[21] R. Satio, G. Dresselhaus and M.S. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College Press, London, 1998.
[22] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point”, Phys. Rev. B, vol. 74, p. 075404, 2006.
[23] P. Blakea, E. W. Hil, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Appl. Phys. Lett., vol. 91, p. 063124, 2007.
[24] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, SoL. Stat. Commun., vol. 143, p. 92-100, 2007.
[25] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J.Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science, vol. 312, p. 1191-1196, 2006.
[26] YM. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, HY. Chiu, A. Grill and P. Avouris, “100-GHz Transistors from Wafer-Scale Epitaxial Graphene”, Science, vol. 327, p. 662, 2010.
[27] X.Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films”, Nature Nanotech., vol. 3, p. 538-542, 2008.
[28] G. Eda, G. Fanchini and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”, Nature Nanotech., vol. 3, p. 270-274, 2008.
[29] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., vol. 9 (1), p. 30-35, 2009.
[30] A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, “Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces”, Nano Res., vol. 2, p. 509-516, 2009.
[31] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, vol. 457, p. 706-710, 2009.
[32] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Il Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H Hong, S. Iijima, “ Roll-to roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotech., vol. 5, p. 574, 2010.
[33] G. Nandamuri, S. Roumimov, and R. Solanki, “Remote plasma assisted growth of graphene films”, Appl. Phys. Lett., vol. 96, p. 154101, 2010.
[34] S. K. Kwang, H. Ryua, and G. E. Jang,” Vertical growth of multi-walled carbon nanotubes by bias-assisted ICPHFCVD and their field emission properties”, Dia. Relat. Mater., vol. 2, p. 1717, 2003.
[35] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene“, Science, vol. 320, p. 1308, 2008.
[36] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhusel, and C. Van Haesendock, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapor deposition”, Nanotech., vol. 19, p. 305604, 2008.
[37] D. Laplazea, L. Alvareza, T. Guillardb, J. M. Badieb and G. Flamantb, “Carbon nanotubes: dynamics of synthesis processes”, Carbon, vol. 40, p. 1621-1634, 2002.
[38] T. B. Massalski, D. E. Laughlin, D. J. Chakrabarti and P. R. Subramanian, “Phase diagrams of binary copper alloys”, Monograph series on alloy phasediagrams, vol. 10, p. 109, 1994.
[39] M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, “Raman spectroscopy of carbon nanotubes”, Phys. Rep., vol. 409, p. 47-99, 2005.
[40] S. Reich and C. Thomsen, “Raman spectroscopy of graphite”, Phil. Trans. R. Soc. Lond. A, vol. 362, p. 2271–2288, 2004.
[41] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett., vol. 97, p. 187401, 2006.
[42] L. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago and M. A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy”, Appl. Phys. Lett., vol. 88, p. 163106, 2006.
[43] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Sol. Stat. Commun., vol. 143, p. 47-57, 2007.
[44] F. Xia, D. B. Farmer, YM. Lin and P. Avouris, “Graphene Field-Effect
Transistors with High On / Off Current Ratio and Large Transport Band
Gap at Room Temperature”, Nano Lett., vol. 10, p. 715-718, 2010.
[45] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotech., vol. 3, p. 210-215, 2008.
[46] J. Yan, Y. Zhang, P. Kim and A. Pinczuk, “Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene”, Phy. Rev. Lett., vol. 98, p. 166802, 2007.
[47] Y. C. Lin, C. Y. Lin, and P. W. Chiu, “Controllable graphene N-doping with ammonia plasma”, Appl. Phys. Lett., vol. 96, p.133110, 2010.
[48] Damon B. Farmer, Yu-Ming Lin, Ali Afzali-Ardakani and Phaedon Avouris, “Behavior of a chemically doped graphene junction”, Phy. Rev. Lett., vol. 94, p. 213106, 2009.
[49] L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, Achutharao Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, “Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene”, Adv. Mater., vol. 21 p.1-5, 2009.
[50] 董家齊,陳寬任,2002年6月354期,科學發展,187期。工業材料雜誌,173。
[51] 連水養,”電漿的基礎原理、製程與應用”。
[52] M.Konuma, “Film deposition by plasma techniques”, Springer-Verlag, 1992.
[53] 張國柱,杜海文,”等離子清洗技術”,2002年10月,國際電子生產設備。
[54] ”淺談電漿表面處理技術”,86 年 3 月 123 期,工業材料雜誌,83。
[55] 溫俊祥,胡應強,莊妙如,”電漿處理技術”, 92 年 5 月 197 期,工業材料雜誌,161。
[56] 廖駿偉,蕭祝螽,陳蔚宗,“OES技術於電漿製程監測之應用”, 93年9月 213期,工業材料雜誌,176。
[57] M.D. Whitfield, R. B.Jackman, D. Rodway, J. A. Savage and J. S. Foord , “microwave plasma characteristics during bias-enhanced nucleation of diamond: An optical emission spectroscopic study”, J. Appl. Phys., vol. 80, p. 3710-3716, 1996.
[58] Petherbridge, James R., May, Paul W., Crichton, Edward J., Rosser, Keith N., Ashfold, Michael N. R., “Sulfur addition to microwave activated CH4 / CO2 gas mixtures used for diamond cvd : growth studies and gas phase investigations”, Phys. Chem. Chem. Phys., vol. 4, p. 5199-5206, 2002.
[59] S. Hofmann, B. Kleinsorge, C. Ducati1, A.C. Ferrari and J. Robertson, “Low-temperature plasma enhanced chemical vapor deposition of carbon nanotubes”, Dia. Relat. Mater., vol. 13, p. 1171-1176, 2004
[60] G. Cicala, P. Bruno, A. M. Losacco, and G. Mattei, "Plasma deposition of hydrogenated diamond-like carbon films from CH4-Ar mixtures”, Surf. Coat. Tech., vol. 180-181, pp. 222-226, 2004.
[61] R. W. B. Pearse and A. G. Gaydon, “The identification of molecular spectra”, J. Chem. Educ., vol. 41 (5), p A398, 1964.
[62] G. Le Du, N. Celini, F. Bergaya, and F. Poncin-Epaillard, "RF plasma-polymerization of acetylene: Correlation between plasma diagnostics and deposit characteristics”, Surf. Coat. Tech., vol. 201, pp. 5815-5821, 2007.
[63] M. M. Larijani, F. Le Normand, and O. Cregut, "An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond”, Appl. Surf. Sci., vol. 253, pp. 4051-4059, 2007.
[64] S. Peter, K. Graupner, D. Grambole, and F. Richter, "Comparative experimental analysis of the a-C:H deposition processes using CH4 and C2H2 as precursors”, J. Appl. Phys., vol. 102, pp. 053304-18, 2007.
[65] 劉有台,吳正明, ”微波電漿源設計技術”,91 年 7 月 187 期,工業材料雜誌, 173。
[66] 呂登復, ”實用真空技術”。
[67] S. Ishii, M. Nagao, T. Watanabe, S. Tsuda, T. Yamaguchi, Y. Takano, “Electrical properties of boron-doped MWNTs synthesized by hot-filament chemical vapor deposition”, Physica C, vol. 469, pp. 1002-1004, 2009.
[68] Yung-Chang Lin, “Distinct electron-phonon couplings in chemically doped and field-effect doped graphenes”, journal club, 27 Feb, 2009.
[69] W. E. Pickett and P. B. Allen, “Superconductivity and phonon softening. III. Relation between electron bands and phonons in Nb, Mo, and their alloys”, Phy. Rev. B, vol. 16, p. 3127, 1977.
[70] M. Lazzeri and F.Mauri, “ Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer”, Phy. Rev. Lett., vol. 97, p. 266407, 2006.
[71] Y.Q. Xia, W. M. Liu, L. G. Yu, N. Han, Q. J. Xue, “Investigation on the tribological properties of boron and lanthanum permeated mild steel”, Mate. Sci. Eng. A, vol. 354, p. 17-23, 2003.
[72] Yabin Sun, Xiaobin Ding, Zhaohui Zheng, Xu Cheng, Xinhua Hu and Yuxing Peng, “Magnetic separation of polymer hybrid iron oxide nanoparticles
triggered by temperature”, Chem. Commun., vol. 2765, p. 2765–2767, 2006.
[73] V. Bryg, P. Rodgers, Y.L.Chen, D. R. Hull and Dr. C.Mueller, “X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You”, univ. space. Res. Assoc.
[74] T. Shirasaki, A. Derre , M. Me′ne′trier, Al. Tressaud and S. Flandrois, “Synthesis and characterization of boron-substituted carbons”, Carbon, vol. 38, p. 1461–1467, 2000.