研究生: |
酈又新 Lih, Yu-Hsin |
---|---|
論文名稱: |
一個使用每週期二位元與數位斜坡轉換之十二位元兩百百萬頻率時序交錯之混合式連續漸進逼近式類比數位轉換器 A 12bit 200MS/s Time-interleaved Hybrid-SAR ADC with Two-bit-per-cycle and Digital-slope Conversions |
指導教授: |
謝志成
Hsieh, Chih-Cheng |
口試委員: |
黃柏鈞
Huang, Po-Chiun 鄭桂忠 Tang, Kea-Tiong 謝秉璇 Hsieh, Ping-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 類比數位轉換器 、循序漸進逼近式 、數位斜坡 |
外文關鍵詞: | ADC, SAR, Digital-slope |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個使用四十奈米製程,操作於兩百百萬頻率的十二位元類比數位轉換器,以雙通道的時序交錯混合式每週期雙位元連續漸進逼近與數位斜坡技巧實現。
傳統循序漸進逼近式類比數位轉換器會因比較時間與電容穩定時間等原因使其操作速度較慢,本論文採用時序交錯架構與雙位元產出手法來加快操作速度,而時序交錯架構中的雙通道架構完全相同,並輪流交替進行收斂行為;雙位元產出則使用一雙通道共用的參考電壓數位類比轉換器與額外兩個離散時間比較器來達成。
而為了解決一般循續漸近式類比數位轉換器在高解析度規格下,電容切換所需能耗與離散時間比較器能耗的問題,本架構採用直接切換手法與兩階段式操作。直接切換手法能減少切換之電容,降低其切換能耗。而兩段式架構操作中第一階段使用在低解析度規格下擁有較佳能源效率的循續漸近式類比數位轉換器並搭配雙位元產出,經過冗餘位元位移後進行第二階段收斂,第二階段採用交互骨牌數位斜坡手法以連續時間比較器代替離散時間比較器降低能源消耗,並採用時域內差手法增加額外的一位元以壓低量化雜訊,達到較好的有效位元數。
藉由以上手法,使本架構能在較少的能耗下達到兩百百萬頻率的中間偏高速操作頻率,並能達到11位元以上的有效位元,並可應用在高速通訊系統中。
This thesis presents a hybrid ADC constructed with two-channel time-interleaved structure, with each channel composed by subrange SAR-based two-bit-per-cycle coarse and alternate-domino digital-slope fine, contribute resolution at 12-bit and operation frequency at 200MHz by TSMC 40nm process.
Conventional SAR ADC has a limit operation frequency due to the comparison time and DAC settling time. To solve this problem, the proposed ADC is composed by time-interleaved structure with two-bit-per-cycle method. The both channel are identically, it works alternatively with the sample clock in 50% duty cycle. The two-bit-per-cycle uses an extra two channel co-use reference DAC and two extra discrete-time comparator to contribute the function.
The another problem of conventional SAR is that the switching energy increases exponentially with the resolution, also, the discrete-time comparator costs dramatic energy to suppress the noise at the high resolution. To solve these problem, the direct-switching and subrange structure is used. The direct-switching can switch lease capacitance to reduce the switching energy. The subrange structure is constructed by SAR-based two-bit-per-cycle coarse and alternate-domino digital slope fine with the redundancy between coarse and fine. The SAR-base two-bit-per-cycle has well power efficiency in low resolution, and the continuous-time comparator of the digital slope has better power efficiency than the discrete-time comparator in high resolution with short operation time. Furthermore, a time-domain interpolation bit is insert into the fine ADC to suppress the quantization noise, make the ENOB better.
The method and structure mentioned below contribute the 11-bit ENOB 200MHz operation frequency ADC with low power, which can applicate in high speed communication system.
[1] B. Murmann, "ADC Performance Survey 1997-2016," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed.: WILEY, 2010.
[3] MICROCHIP, DC Specifications http://microchipdeveloper.com/adc:adc-dc-spec
[4] R. H. Walden, "Analog-to-digital converter survey and analysis," in IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539-550, Apr 1999.
[5] D. J. Deng, K. C. Chen and R. S. Cheng, "IEEE 802.11ax: Next generation wireless local area networks," 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Rhodes, 2014, pp. 77-82.
[6] B. Verbruggen, K. Deguchi, B. Malki and J. Craninckx, "A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS," 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2.
[7] Yuan Zhou, Benwei Xu and Yun Chiu, "A 12b 160MS/s synchronous two-step SAR ADC achieving 20.7fJ/step FoM with opportunistic digital background calibration," 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2.
[8] J. P. Mathew, L. Kong and B. Razavi, "A 12-bit 200-MS/s 3.4-mW CMOS ADC with 0.85-V supply," 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, 2015, pp. C66-C67.
[9] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed.: McGraw-Hill 2002.
[10] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink and B. Nauta, "A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 244-610.
[11] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," IEEE Trans. Circuits and Systems II, Express Briefs, vol. 53, pp. 541-545, Jul. 2006.
[12] C. C. Liu, S. J. Chang, G. Y. Huang and Y. Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[13] C. C. Liu, M. C. Huang and Y. H. Tu, "A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC," in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016.
[14] P. Harpe, E. Cantatore and A. van Roermund, "A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step," in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3011-3018, Dec. 2013.
[15] T. Miki et al., "A 4.2 mW 50 MS/s 13 bit CMOS SAR ADC With SNR and SFDR Enhancement Techniques," in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1372-1381, June 2015.
[16] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York, NY, USA: Wiley, 1997, ch. 13, sec. 1, pp. 487–489.
[17] P. J. A. Harpe, C. Zhou, K. Philips, and H. de Groot, “A 0.8-mW 5-bit 250-MS/s time-interleaved asynchronous digital slope ADC,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2450–2457, Nov. 2011.
[18] G.-Y. Huang, C.-C. Liu, Y.-Z. Lin, and S.-J. Chang, "A 10-bit 12-MS/s successive approximation ADC with 1.2-pF input capacitance," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2009, pp. 157-160.