研究生: |
賴志慶 Lai, Chih-Ching |
---|---|
論文名稱: |
前列腺癌核磁共振影像的直方圖分析與深度卷積神經網絡 Histogram analysis and deep convolutional neural network in prostate cancer magnetic resonance imaging |
指導教授: |
彭旭霞
Peng, Hsu-Hsia |
口試委員: |
劉益瑞
Liu, Yi-Jui 沈書慧 Shen, Shu-Huei 黃騰毅 Huang, Teng-Yi 周銘鐘 Chou, Ming-Chung |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 前列腺癌 、直方圖分析 、核磁共振影像 、深度卷積神經網絡 、影像分割 、動態對比增強影像 、多參數核磁共振影像 、擴散加權影像 、T2加權影像 |
外文關鍵詞: | prostate cancer, Histogram analysis, magnetic resonance imaging, deep convolutional neural network, dynamic contrast -enhanced MRI, diffusion-weighted images, multiparametric magnetic resonance imaging, T2-weighted images |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著多參數核磁共振影像(mp-MRI)的發展,對於診斷前列腺癌的準確性有所提高,完整的mp-MRI影像包括T2加權影像(T2W)、擴散加權影像(DWI)、擴散係數影像(ADC)和動態對比增強影像(DCE-MRI)。
在本論文中,首先利用直方圖參數來分析DCE-MRI影像中對比劑最大洗入斜率(MWS)和延遲洗出斜率(DPS)於攝護腺腫瘤組織與正常組織的區分能力。結果顯示,在攝護腺的過度區,變異係數唯一在MWS中可以區分腫瘤與正常組織的參數,而在DPS中有較多的參數可以區分腫瘤(如 平均值、偏度、10%、25%、50%、75%和90%)。攝護腺外圍區的部分,在MWS分析中,除了峰度和偏度外,其他直方圖參數對於區分組織,都有顯著的差異。在DPS中有顯著差異的參數為標準差、四分位距、修正過半峰全寬,百分位數距(90%-10%)。在攝護腺的過度區與外圍區的MWS 和 DPS中,有不同的直方圖參數可以被用來區分腫瘤。
最後本論文使用以SegNet為基礎的深度卷積神經網路模型來自動分割攝護腺過度區、外圍區和腫瘤的區域。本文中使用PROSTATEx的數據集中的影像來訓練模型,將三種不同序列的核磁共振影像,分別為T2W、DWI和ADC等三種影像,並將其結合為一張三通道(RGB)的影像,並在影像上圈選出三個區域的範圍,最後利用上述三種影像做不同排列的分組來放入模型訓練。結果發現,在T2W + DWI + ADC影像組合表現出較好的分割效能,而在個別區域分割的相似係數分別為過度區(90.45%)、外圍區(70.04%)和腫瘤區(52.73%),使用深度卷積神經網路模型來診斷腫瘤以及分割區域是相當有潛力的。
本文的結論為,對於DCE-MRI 時間強度曲線進行直方圖分析,可以用來區分 過度區與外圍區中的良性前列腺組織和腫瘤,並且深度卷積神經模型於影像序列分析中,用來輔助診斷腫瘤有相當大的潛力。
The accuracy in diagnosing prostate cancer (PCa) has increased with the development of multiparametric magnetic resonance imaging (mp-MRI). A complete mp-MRI contains T2-weighted (T2W) images, diffusion-weighted images (DWIs), the corresponding apparent diffusion coefficient (ADC) map and dynamic contrast
-enhanced MRI (DCE-MRI). However, the diagnostic accuracy and efficiency of mp-MRI still have room for improvement. In this thesis, we aimed to establish new perfusion variables to analyze histograms and use the DCNN model to segment PCa and prostate zones in mp-MRI. Further improvement of diagnostic performance in prostate MRI.
In this thesis, we evaluated the performance of histogram analysis in the time course of DCE-MRI for differentiating cancerous tissues from benign tissues in the prostate. The results showed that the coefficient of variation (CV) was the only significantly different parameter of the maximum difference wash-in slope (MWS)), whereas many parameters of the delay phase slope (DPS) (mean, skewness, P10, P25, P50, P75 and P90) differed significantly in the transitional zone (TZ) of prostate. In the peripheral zone (PZ), all parameters of the MWS exhibited significant differences, except kurtosis and skewness. The standard deviation (SD), interquartile range (IQR), modified full width at half-maximum (mFWHM), percentile (P90P10) and Range were also significant differences in the DPS. Different histogram parameters of the MWS and DPS should be applied in the TZ and PZ.
We presented a method for autosegmenting the prostate zone and cancer region by using SegNet, a deep convolution neural network (DCNN) model. We used PROSTATEx dataset to train the model and combined different sequences into three channels of a single image. For each subject, all slices that contained the TZ, PZ and PCa region were selected. The datasets were produced using different combinations of images, including T2W images, DWI and apparent diffusion coefficient (ADC) images. Among these groups, the T2W + DWI + ADC images exhibited the best performance with a dice similarity coefficient of 90.45% for the TZ, 70.04% for the PZ, and 52.73% for the PCa region.
In conclusion, we conducted a histogram analysis of DCE-MRI time course data to distinguish between benign prostate tissues and tumors in the TZ and peripheral zone (PZ). Image sequence analysis with a DCNN model has the potential to assist PCa diagnosis.
1. Anneke Meyer, M.R., Daniel Schindele, Simon Blaschke, Martin Schostak, Andriy Fedorov, Christian Hansen. Towards patient-individual pi-rads v2 sector map: Cnn for automatic segmentation of prostatic zones from t2-weighted mri. 2019 IEEE 16th International Symposium on Biomedical Imaging(ISBI 2019) 2019, 696-700.
2. Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M., et al. Pi-rads prostate imaging - reporting and data system: 2015, version 2. Eur Urol 2016, 69, 16-40.
3. American Cancer Society. (accessed on 6 February 2021).
4. Kumar, V.; Bora, G.S.; Kumar, R.; Jagannathan, N.R. Multiparametric (mp) mri of prostate cancer. Prog Nucl Magn Reson Spectrosc 2018, 105, 23-40.
5. Serefoglu, E.C.; Altinova, S.; Ugras, N.S.; Akincioglu, E.; Asil, E.; Balbay, M.D. How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can Urol Assoc J 2013, 7, E293-298.
6. Hoeks, C.M.; Barentsz, J.O.; Hambrock, T.; Yakar, D.; Somford, D.M.; Heijmink, S.W.; Scheenen, T.W.; Vos, P.C.; Huisman, H.; van Oort, I.M., et al. Prostate cancer: Multiparametric mr imaging for detection, localization, and staging. Radiology 2011, 261, 46-66.
7. Vos, E.K.; Litjens, G.J.; Kobus, T.; Hambrock, T.; Hulsbergen-van de Kaa, C.A.; Barentsz, J.O.; Huisman, H.J.; Scheenen, T.W. Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3 t. Eur Urol 2013, 64, 448-455.
8. Perdona, S.; Di Lorenzo, G.; Autorino, R.; Buonerba, C.; De Sio, M.; Setola, S.V.; Fusco, R.; Ronza, F.M.; Caraglia, M.; Ferro, M., et al. Combined magnetic resonance spectroscopy and dynamic contrast-enhanced imaging for prostate cancer detection. Urol Oncol 2013, 31, 761-765.
9. Isebaert, S.; De Keyzer, F.; Haustermans, K.; Lerut, E.; Roskams, T.; Roebben, I.; Van Poppel, H.; Joniau, S.; Oyen, R. Evaluation of semi-quantitative dynamic contrast-enhanced mri parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol 2012, 81, e217-222.
10. Jackson, A.; O'Connor, J.P.; Parker, G.J.; Jayson, G.C. Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 2007, 13, 3449-3459.
11. Fan, X.; Medved, M.; River, J.N.; Zamora, M.; Corot, C.; Robert, P.; Bourrinet, P.; Lipton, M.; Culp, R.M.; Karczmar, G.S. New model for analysis of dynamic contrast-enhanced mri data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors. Magn Reson Med 2004, 51, 487-494.
12. van Niekerk, C.G.; Witjes, J.A.; Barentsz, J.O.; van der Laak, J.A.; Hulsbergen-van de Kaa, C.A. Microvascularity in transition zone prostate tumors resembles normal prostatic tissue. Prostate 2013, 73, 467-475.
13. Padhani, A.R.; Gapinski, C.J.; Macvicar, D.A.; Parker, G.J.; Suckling, J.; Revell, P.B.; Leach, M.O.; Dearnaley, D.P.; Husband, J.E. Dynamic contrast enhanced mri of prostate cancer: Correlation with morphology and tumour stage, histological grade and psa. Clin Radiol 2000, 55, 99-109.
14. Noworolski, S.M.; Henry, R.G.; Vigneron, D.B.; Kurhanewicz, J. Dynamic contrast-enhanced mri in normal and abnormal prostate tissues as defined by biopsy, mri, and 3d mrsi. Magn Reson Med 2005, 53, 249-255.
15. Fusco, R.; Sansone, M.; Granata, V.; Setola, S.V.; Petrillo, A. A systematic review on multiparametric mr imaging in prostate cancer detection. Infect Agent Cancer 2017, 12, 57.
16. Fusco, R.; Sansone, M.; Petrillo, M.; Setola, S.V.; Granata, V.; Botti, G.; Perdona, S.; Borzillo, V.; Muto, P.; Petrillo, A. Multiparametric mri for prostate cancer detection: Preliminary results on quantitative analysis of dynamic contrast enhanced imaging, diffusion-weighted imaging and spectroscopy imaging. Magn Reson Imaging 2016, 34, 839-845.
17. Petrillo, A.; Fusco, R.; Setola, S.V.; Ronza, F.M.; Granata, V.; Petrillo, M.; Carone, G.; Sansone, M.; Franco, R.; Fulciniti, F., et al. Multiparametric mri for prostate cancer detection: Performance in patients with prostate-specific antigen values between 2.5 and 10 ng/ml. J Magn Reson Imaging 2014, 39, 1206-1212.
18. Kim, J.Y.; Kim, S.H.; Kim, Y.H.; Lee, H.J.; Kim, M.J.; Choi, M.S. Low-risk prostate cancer: The accuracy of multiparametric mr imaging for detection. Radiology 2014, 271, 435-444.
19. Hambrock, T.; Vos, P.C.; Hulsbergen-van de Kaa, C.A.; Barentsz, J.O.; Huisman, H.J. Prostate cancer: Computer-aided diagnosis with multiparametric 3-t mr imaging--effect on observer performance. Radiology 2013, 266, 521-530.
20. Turkbey, B.; Pinto, P.A.; Mani, H.; Bernardo, M.; Pang, Y.; McKinney, Y.L.; Khurana, K.; Ravizzini, G.C.; Albert, P.S.; Merino, M.J., et al. Prostate cancer: Value of multiparametric mr imaging at 3 t for detection--histopathologic correlation. Radiology 2010, 255, 89-99.
21. Peng, Y.; Jiang, Y.; Yang, C.; Brown, J.B.; Antic, T.; Sethi, I.; Schmid-Tannwald, C.; Giger, M.L.; Eggener, S.E.; Oto, A. Quantitative analysis of multiparametric prostate mr images: Differentiation between prostate cancer and normal tissue and correlation with gleason score--a computer-aided diagnosis development study. Radiology 2013, 267, 787-796.
22. Verma, S.; Turkbey, B.; Muradyan, N.; Rajesh, A.; Cornud, F.; Haider, M.A.; Choyke, P.L.; Harisinghani, M. Overview of dynamic contrast-enhanced mri in prostate cancer diagnosis and management. AJR Am J Roentgenol 2012, 198, 1277-1288.
23. Just, N. Improving tumour heterogeneity mri assessment with histograms. Br J Cancer 2014, 111, 2205-2213.
24. Donati, O.F.; Mazaheri, Y.; Afaq, A.; Vargas, H.A.; Zheng, J.; Moskowitz, C.S.; Hricak, H.; Akin, O. Prostate cancer aggressiveness: Assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology 2014, 271, 143-152.
25. Peng, S.L.; Chen, C.F.; Liu, H.L.; Lui, C.C.; Huang, Y.J.; Lee, T.H.; Chang, C.C.; Wang, F.N. Analysis of parametric histogram from dynamic contrast-enhanced mri: Application in evaluating brain tumor response to radiotherapy. NMR Biomed 2013, 26, 443-450.
26. Yang, X.; Knopp, M.V. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: A review. J Biomed Biotechnol 2011, 2011, 732848.
27. Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J., et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 2019, 76, 340-351.
28. Tamada, T.; Kido, A.; Yamamoto, A.; Takeuchi, M.; Miyaji, Y.; Moriya, T.; Sone, T. Comparison of biparametric and multiparametric mri for clinically significant prostate cancer detection with pi-rads version 2.1. J Magn Reson Imaging 2021, 53, 283-291.
29. Litjens, G.J.; Barentsz, J.O.; Karssemeijer, N.; Huisman, H.J. Clinical evaluation of a computer-aided diagnosis system for determining cancer aggressiveness in prostate mri. Eur Radiol 2015, 25, 3187-3199.
30. Cuocolo, R.; Cipullo, M.B.; Stanzione, A.; Ugga, L.; Romeo, V.; Radice, L.; Brunetti, A.; Imbriaco, M. Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp 2019, 3, 35.
31. Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017, 19, 221-248.
32. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.; van Ginneken, B.; Sanchez, C.I. A survey on deep learning in medical image analysis. Med Image Anal 2017, 42, 60-88.
33. Yan, K.; Wang, X.; Kim, J.; Khadra, M.; Fulham, M.; Feng, D. A propagation-dnn: Deep combination learning of multi-level features for mr prostate segmentation. Comput Methods Programs Biomed 2019, 170, 11-21.
34. Wang, B.; Lei, Y.; Tian, S.; Wang, T.; Liu, Y.; Patel, P.; Jani, A.B.; Mao, H.; Curran, W.J.; Liu, T., et al. Deeply supervised 3d fully convolutional networks with group dilated convolution for automatic mri prostate segmentation. Med Phys 2019, 46, 1707-1718.
35. Alkadi, R.; Taher, F.; El-Baz, A.; Werghi, N. A deep learning-based approach for the detection and localization of prostate cancer in t2 magnetic resonance images. J Digit Imaging 2019, 32, 793-807.
36. Simon Kohl, D.B.; Heinz-Peter Schlemmer; Kaneschka Yaqubi; Markus Hohenfellner; Boris Hadaschik; Jan-Philipp Radtke, a.; Maier-Hein, K. Adversarial networks for the detection of aggressive prostate cancer. arXiv:1702.08014. 2017.
37. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask r-cnn. IEEE Trans Pattern Anal Mach Intell 2020, 42, 386-397.
38. Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 2017, 39, 640-651.
39. Almotairi, S.; Kareem, G.; Aouf, M.; Almutairi, B.; Salem, M.A. Liver tumor segmentation in ct scans using modified segnet. Sensors (Basel) 2020, 20.
40. Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F., et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin 2019, 69, 127-157.
41. Zhu, Y.; Wei, R.; Gao, G.; Ding, L.; Zhang, X.; Wang, X.; Zhang, J. Fully automatic segmentation on prostate mr images based on cascaded fully convolution network. J Magn Reson Imaging 2019, 49, 1149-1156.
42. Kalantar, R.; Lin, G.; Winfield, J.M.; Messiou, C.; Lalondrelle, S.; Blackledge, M.D.; Koh, D.M. Automatic segmentation of pelvic cancers using deep learning: State-of-the-art approaches and challenges. Diagnostics (Basel) 2021, 11.
43. Song, Y.; Zhang, Y.D.; Yan, X.; Liu, H.; Zhou, M.; Hu, B.; Yang, G. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric mri. J Magn Reson Imaging 2018, 48, 1570-1577.
44. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw 2015, 61, 85-117.
45. To, M.N.N.; Vu, D.Q.; Turkbey, B.; Choyke, P.L.; Kwak, J.T. Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. Int J Comput Assist Radiol Surg 2018, 13, 1687-1696.
46. Tian, Z.; Liu, L.; Zhang, Z.; Fei, B. Psnet: Prostate segmentation on mri based on a convolutional neural network. J Med Imaging (Bellingham) 2018, 5, 021208.
47. Khan, Z.; Yahya, N.; Alsaih, K.; Ali, S.S.A.; Meriaudeau, F. Evaluation of deep neural networks for semantic segmentation of prostate in t2w mri. Sensors (Basel) 2020, 20.
48. L. Rundo, C.H., Y. Nagano, J. Zhang, R. Hataya, C. Militello. Use-net: Incorporating squeeze-and-excitation blocks into u-net for prostate zonal segmentation of multi-institutional mri datasets. Neurocomputing 2019, 365, 31-43.
49. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 2017, 39, 2481-2495.
50. American collage of radiology. Pi-rads v2.2015. 2015.
51. Multi-image analysis gui 2013.
52. D.-A. Clevert, T.U., S. Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). Proceedings of the International Conference on Learning Representations (ICLR) 2016.
53. Yasrab, R. "Ecru: An encoder-decoder based convolution neural network (cnn) for road-scene understanding". J. Imaging 2018, 4.
54. Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P. Elastix: A toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010, 29, 196-205.
55. Bovik, A.C. The essential guide to image processing. Academic Press: 2009.
56. Dhivya, J.J.R., M. A perusal analysis on hybrid spectrum handoff schemes in cognitive radio
networks. In Proceedings of the International Conference on Intelligent Systems Design and Applications,Vellore, India, 2018, 312–321.
57. Christ, P.F.; Elshaer, M.E.A.; Ettlinger, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; Rempfler, M.; Armbruster, M.; Hofmann, F.; D’Anastasi, M., et al. In Automatic liver and lesion segmentation in ct using cascaded fully convolutional neural networks and 3d conditional random fields, Cham, 2016; Springer International Publishing: Cham, pp 415-423.
58. Liu, Y.; Yang, G.; Mirak, S.A.; Hosseiny, M.; Azadikhah, A.; Zhong, X.; Reiter, R.E.; Lee, Y.; Raman, S.S.; Sung, K.J.I.A. Automatic prostate zonal segmentation using fully convolutional network with feature pyramid attention. IEEE Access 2019, 7, 163626-163632.
59. Zelhof, B.; Lowry, M.; Rodrigues, G.; Kraus, S.; Turnbull, L. Description of magnetic resonance imaging-derived enhancement variables in pathologically confirmed prostate cancer and normal peripheral zone regions. BJU Int 2009, 104, 621-627.
60. Preziosi, P.; Orlacchio, A.; Di Giambattista, G.; Di Renzi, P.; Bortolotti, L.; Fabiano, A.; Cruciani, E.; Pasqualetti, P. Enhancement patterns of prostate cancer in dynamic mri. Eur Radiol 2003, 13, 925-930.
61. Rouviere, O.; Raudrant, A.; Ecochard, R.; Colin-Pangaud, C.; Pasquiou, C.; Bouvier, R.; Marechal, J.M.; Lyonnet, D. Characterization of time-enhancement curves of benign and malignant prostate tissue at dynamic mr imaging. Eur Radiol 2003, 13, 931-942.
62. Chen, Y.J.; Chu, W.C.; Pu, Y.S.; Chueh, S.C.; Shun, C.T.; Tseng, W.Y. Washout gradient in dynamic contrast-enhanced mri is associated with tumor aggressiveness of prostate cancer. J Magn Reson Imaging 2012, 36, 912-919.
63. Engelbrecht, M.R.; Huisman, H.J.; Laheij, R.J.; Jager, G.J.; van Leenders, G.J.; Hulsbergen-Van De Kaa, C.A.; de la Rosette, J.J.; Blickman, J.G.; Barentsz, J.O. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced mr imaging. Radiology 2003, 229, 248-254.
64. Aldoj, N.; Biavati, F.; Michallek, F.; Stober, S.; Dewey, M. Automatic prostate and prostate zones segmentation of magnetic resonance images using densenet-like u-net. Sci Rep 2020, 10, 14315.
65. Liu S, Z.H., Feng Y, Li W. Prostate cancer diagnosis using deep learning with 3d multiparametric mri. In Armato SG, Petrick NA, editor. International Society for Optics and Photonics 2017, 10134.
66. Delongchamps, N.B.; Rouanne, M.; Flam, T.; Beuvon, F.; Liberatore, M.; Zerbib, M.; Cornud, F. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: Combination of t2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int 2011, 107, 1411-1418.
67. Langer, D.L.; van der Kwast, T.H.; Evans, A.J.; Trachtenberg, J.; Wilson, B.C.; Haider, M.A. Prostate cancer detection with multi-parametric mri: Logistic regression analysis of quantitative t2, diffusion-weighted imaging, and dynamic contrast-enhanced mri. J Magn Reson Imaging 2009, 30, 327-334.
68. Haider, M.A.; van der Kwast, T.H.; Tanguay, J.; Evans, A.J.; Hashmi, A.T.; Lockwood, G.; Trachtenberg, J. Combined t2-weighted and diffusion-weighted mri for localization of prostate cancer. AJR Am J Roentgenol 2007, 189, 323-328.
69. Vente, C.; Vos, P.; Hosseinzadeh, M.; Pluim, J.; Veta, M. Deep learning regression for prostate cancer detection and grading in bi-parametric mri. IEEE Trans Biomed Eng 2021, 68, 374-383.
70. Gaur, S.; Lay, N.; Harmon, S.A.; Doddakashi, S.; Mehralivand, S.; Argun, B.; Barrett, T.; Bednarova, S.; Girometti, R.; Karaarslan, E., et al. Can computer-aided diagnosis assist in the identification of prostate cancer on prostate mri? A multi-center, multi-reader investigation. Oncotarget 2018, 9, 33804-33817.
71. Artan, Y.; Haider, M.A.; Langer, D.L.; van der Kwast, T.H.; Evans, A.J.; Yang, Y.Y.; Wernick, M.N.; Trachtenberg, J.; Yetik, I.S. Prostate cancer localization with multispectral mri using cost-sensitive support vector machines and conditional random fields. Ieee T Image Process 2010, 19, 2444-2455.
72. Barentsz, J.O.; Weinreb, J.C.; Verma, S.; Thoeny, H.C.; Tempany, C.M.; Shtern, F.; Padhani, A.R.; Margolis, D.; Macura, K.J.; Haider, M.A., et al. Synopsis of the pi-rads v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol 2016, 69, 41-49.