簡易檢索 / 詳目顯示

研究生: 陳仁斌
Chen, Jen-Pin
論文名稱: 利用高良率細胞電融合晶片於單株抗體製作之研究
High-Yield Electrofusion Lab Chip for Production of Monoclonal Antibody
指導教授: 劉承賢
Liu, Cheng -Hsien
口試委員: 曹哲之
徐琅
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 單株抗體細胞融合聚二乙醇微流體晶片細胞配對
外文關鍵詞: Monoclonal antibodies, Cell fusion, Polydimethyl ethanol, Microfluidic chip, Cell pairing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    抗體是生物體內眾多防禦物質的一種,由血液中的B細胞所產生,當外物侵入生物體時,生物體內之細胞會對此外來物產生反應,經過細胞間的命令傳達後,某些血液細胞會開始進行分化作用,產生對外來物具攻擊性的細胞。每一個細胞只會生產一種抗體,然而這種細胞本身不具有分裂與增殖的能力,因此當此種細胞生產抗體達一段時間後,就會死亡、消失。
    而單株抗體研製的發展由70年代開始,這二十年來已經廣泛應用於基礎科學研究和生醫檢驗上,除此之外,臨床上直接使用抗體來治療癌症,改善自體免疫疾病等也有相當的進展和成效。而製備單株抗體的方法最主要仍是沿用自1975年Kohler與Milstein發展出製作單株抗體技術,在小鼠體內打入抗原誘發抗體反應,分離出小鼠B細胞和骨髓瘤細胞來進行融合,篩選出可以製造特定單一抗體之融合瘤細胞株,之後方能進行培養大量的單株抗體,這種融合瘤細胞不但具有癌細胞不斷分裂的能力,又有免疫細胞分泌抗體的能力,是目前生醫應用最廣的技術。在單株抗體應用於癌症治療方法的應用,主要是將藥物連結在單株抗體上,即可利用單株抗體的專一性而將藥物帶至目的地。例如:將可以殺死細胞的藥物與對癌細胞有特異性之單株抗體結合一起,再將此結合物打入癌症病患體內,此時,單株抗體就會將藥物帶到癌細胞處,再發揮藥效將癌細胞殺死,並不會影響到正常細胞,有別於放射線和化療等癌症治療方法。
    但是在過去使用聚二乙醇化學融合或隨機性電融合製造出的融合瘤細胞,其融合率及品質都十分不穩定,而本論文擬針對單株抗體的製作技術改良,利用半導體製程的技術,在微米尺度下的微流體晶片,設計並完成一具有大規模細胞配對及融合能力之細胞電融合晶片,精準的將欲融合的細胞進行細胞配對與接觸,再搭配輔助電極以電融合的方式,使細胞膜分子短暫產生排列的改變再恢復而相融完成細胞融合。


    Antibodies are large Y-shaped proteins produced by B-cells. Antibodies are recruited by the immune system to identify and neutralize foreign objects like bacteria and viruses. The stimulated B cell performs repeated cell divisions, enlargement and differentiation to form a clone of antibody secreting plasma cells. Through specific antigen recognition, clonal expansion and B cell differentiation, effective number of plasma cells are formed and secrets the same required antibody. That antibody then binds to the bacteria making them easy to be ingested by white cells. Each cell can only produce an antibody. However, such cell division and proliferation do not have the capacity. So after a period of time when such cells produce antibodies, they will die and disappear.
    The monoclonal antibodies have been widely used for the last twenty years for scientific research and biomedical testing. The use of monoclonal antibodies for cancer treatment and autoimmune diseases shows considerable progress and effectiveness. The main preparation technology of monoclonal antibodies has been developed by Kohler and Milstein in 1975. Injection of the antigen into the mice induces the reaction of antibody. Separating the B cell from the mice and fusing them with the Myeloma cells could filter out the Hybridoma cell line which can generate the specific single antibody subsequent product a large number of monoclonal antibodies. The hybridoma cells, which not only have the ability of cancer cells to keep dividing but also have the ability of the immune cells to secrete antibodies, are the most widely used technology in biomedical presently. Applications of monoclonal antibodies used in cancer treatments and the drug link in monoclonal antibodies; can take the specificity of the monoclonal antibody drug to the destination. For example, the drugs which can kill cells and cancer-specific monoclonal antibody could be combines; and then injected into a cancer patient's body. At this point, the drug will be taken to the cancer cells by the monoclonal antibodies. Finally, playing the pharmacodynamics will kill cancer cells and not affect normal cells, unlike cancer treatments via radiation and chemotherapy, for example.
    In the past, either chemical fusion or electric fusion was used to produce hybridoma cells. The fusion efficiency and quality are unstable. This research is intended for developing the microchip technology for high throughput production of monoclonal antibodies. Semiconductor process technology was used to fabricate the micro device on which precise cell pairing and cell fusion can be done.

    第一章 緒論 1 1.1 前言 1 1.2 細胞融合 2 1.3 研究背景與動機 3 1.4 細胞融合的應用 5 1.4.1 動物細胞融合技術的應用 6 1.4.2 植物細胞融合技術的應用 6 1.4.3 微生物細胞融合技術的應用 7 1.5 文獻回顧 7 1.5.1 細胞融合技術原理與方法 7 1.5.1.1 病毒誘導融合法 8 1.5.1.2 化學劑誘導融合法 9 1.5.1.3 電訊號誘導融合法 10 1.5.1.4 激光誘導融合法 11 1.5.2 微流體晶片應用於細胞操控與配對 12 1.5.2.1 機械操控 12 1.5.2.2 光學操控 14 1.5.2.3 電力操控 16 1.5.2.4 流體動力操控 17 1.5.3 微流體晶片應用於細胞電融合 19 1.5.4 單株抗體免疫療法 22 第二章 晶片設計與原理 24 2.1 設計基礎與理論 24 2.1.1 微流體流阻分析 24 2.1.2 介電泳力 25 2.1.2.1 介電材質其極化機制 25 2.1.2.2 介電泳力作用機制 26 2.1.3 細胞膜融合電位探討 30 2.2 設計概念 32 2.2.1 微過濾器設計 33 2.2.2 分支微流道設計 34 2.2.1.1 分支微流道模擬 35 2.2.3 異質細胞抓取配對之微結構設計 35 2.2.3.1 異質細胞抓取配對之晶片操作 36 2.2.3.2 異質細胞抓取配對之流場模擬 40 2.2.4 細胞電接觸和融合電極設計 42 2.2.4.1 細胞電接觸和融合之晶片操作 43 2.2.4.2 細胞電接觸和融合電極之電場模擬 44 第三章 晶片製程 46 3.1製作流程 46 3.1.1 異質細胞配對微流道製程 46 3.1.2 細胞電接觸和融合電極製程 48 3.1.3 微流道結合電極之製程 50 3.2 製程結果 50 3.2.1 微流道結構 51 3.2.2 細胞電接觸和融合電極 52 3.2.3微流道和電極 52 第四章 實驗結果與討論 54 4.1材料準備 54 4.1.1 小鼠骨髓瘤細胞培養 54 4.1.2 細胞DEP配對和電融合之前處理 54 4.1.3 聚苯乙烯粒子 55 4.1.4 排除流道氣泡 55 4.2 實驗架設 55 4.2.1 儀器架設 55 4.2.2 細胞電融合脈衝參數 56 4.3 實驗結果 57 4.3.1分支微流道 57 4.3.2 粒子配對結果討論 58 4.3.3 細胞配對結果討論 60 4.3.4 細胞電接觸結果討論 62 4.3.5 細胞電融合結果討論 62 第五章 結論 66 參考文獻 67

    [1] E. H. Chen and E. N. Olson, "Unveiling the mechanisms of cell-cell fusion," Science, vol. 308, pp. 369-73, Apr 15 2005.
    [2] B. M. Ogle, M. Cascalho, and J. L. Platt, "Biological implications of cell fusion," Nat Rev Mol Cell Biol, vol. 6, pp. 567-75, 2005.
    [3] E. H. Chen, E. Grote, W. Mohler, and A. Vignery, "Cell–cell fusion," FEBS letters, vol. 581, pp. 2181-2193, 2007.
    [4] J. M. Robinson, D. S. Roos, R. L. Davidson, and M. J. Karnovsky, "Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion," J Cell Sci, vol. 40, pp. 63-75, Dec 1979.
    [5] V. L. Vaughan, D. Hansen, and J. Stadler, "Parameters of Polyethylene Glycol-Induced Cell-Fusion and Hybridization in Lymphoid-Cell Lines," Somatic Cell Genetics, vol. 2, pp. 537-544, 1976.
    [6] G. A. Neil and U. Zimmermann, "[14] Electrofusion," in Methods in Enzymology. vol. Volume 220, D. Nejat, Ed., ed: Academic Press, 1993, pp. 174-196.
    [7] U. Zimmermann, "Electric field-mediated fusion and related electrical phenomena," Biochim Biophys Acta, vol. 694, pp. 227-77, Nov 30 1982.
    [8] J. Yang, L.-P. Zhao, Z.-Q. Yin, N. Hu, J. Chen, T.-Y. Li, I. Svir, and X.-L. Zheng, "Chip-Based Cell Electrofusion," Advanced Engineering Materials, vol. 12, pp. B398-B405, 2010.
    [9] "http://www.fisherbiotec.com.au/shop/product/electrofusion_systems/324."
    [10] C. C. Chu, Y. T. Lu, S. K. Lai, H. L. Lee, and M. Lin, "Identification of the novel allele HLA-B*51:84 by sequence-based typing method in a Taiwanese individual," Tissue Antigens, vol. 76, pp. 337-8, 2010.
    [11] I. H. Chen, Y. L. Lai, C. L. Wu, Y. F. Chang, C. C. Chu, I. F. Tsai, F. J. Sun, and Y. T. Lu, "Immune impairment in patients with terminal cancers: influence of cancer treatments and cytomegalovirus infection," Cancer Immunol Immunother, vol. 59, pp. 323-34, 2010.
    [12] P. C. Chu, T. Y. Wang, Y. T. Lu, C. K. Chou, Y. C. Yang, and M. S. Chang, "Involvement of p29 in DNA damage responses and Fanconi anemia pathway," Carcinogenesis, vol. 30, pp. 1710-6, Oct 2009.
    [13] C. L. Liu and Y. T. Lu, "Bronchodilatation effects of a small volume spacer used with a metered-dose inhaler," J Asthma, vol. 46, pp. 637-41, 2009.
    [14] C. G. Chen, Y. T. Lu, M. Lin, N. Savelyeva, F. K. Stevenson, and D. Zhu, "Amplification of immune responses against a DNA-delivered idiotypic lymphoma antigen by fusion to the B subunit of E. coli heat labile toxin," Vaccine, vol. 27, pp. 4289-96, 2009.
    [15] C. P. Kuo, C. L. Wu, H. T. Ho, C. G. Chen, S. I. Liu, and Y. T. Lu, "Detection of cytomegalovirus reactivation in cancer patients receiving chemotherapy," Clin Microbiol Infect, vol. 14, pp. 221-7, Mar 2008.
    [16] C. L. Liu, W. Y. Hsieh, C. L. Wu, H. T. Kuo, and Y. T. Lu, "Triggering receptor expressed on myeloid cells-1 in pleural effusions: a marker of inflammatory disease," Respir Med, vol. 101, pp. 903-9, May 2007.
    [17] "http://en.wikipedia.org/wiki/Monoclonal_antibodies."
    [18] "http://biotech.nstm.gov.tw/05/052_6.asp."
    [19] "羅立新編著, 細胞融合技術與應用, 化學工業出版社, 2003。."
    [20] B. s. J. Okada Y, "The introduction of cell fusion with non-activity Xitai virus[J]," Nature, vol. 1, pp. 103-110, 1958.
    [21] H. Harris and J. F. Watkins, "Hybrid Cells Derived from Mouse and Man: Artificial Heterokaryons of Mammalian Cells from Different Species," Nature, vol. 205, pp. 640-6, Feb 13 1965.
    [22] R. L. Davidson, K. A. O'Malley, and T. B. Wheeler, "Polyethylene glycol-induced mammalian cell hybridization: effect of polyethylene glycol molecular weight and concentration," Somatic Cell Genet, vol. 2, pp. 271-80, 1976.
    [23] H. A, "The method of cell fusion with the electric pulse [M-]," New York:Plenum Pres, pp. 59-67, 1982.
    [24] S. M, "The cell fusion of plant with the electric pulse [J]," Plant Cell Physical, vol. 20, pp. Electric field-mediated fusion and related electrical phenomena. , 1979.
    [25] H. T. Wicgand R, Kaminski A, "The study on the method of acoustic-electro fusion[J]," Cell Sci, vol. 88, pp. 145-149, 1987.
    [26] L. Zhu, Q. Zhang, H. H. Feng, S. Ang, F. S. Chauc, and W. T. Liu, "Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells," Lab on a Chip, vol. 4, pp. 337-341, 2004.
    [27] H. Mohamed, L. D. McCurdy, D. H. Szarowski, S. Duva, J. N. Turner, and M. Caggana, "Development of a rare cell fractionation device: application for cancer detection," IEEE Trans Nanobioscience, vol. 3, pp. 251-6, 2004.
    [28] J. Moorthy and D. J. Beebe, "In situ fabricated porous filters for microsystems," Lab on a Chip, vol. 3, pp. 62-6, May 2003.
    [29] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, "Continuous particle separation through deterministic lateral displacement," Science, vol. 304, pp. 987-990, May 14 2004.
    [30] A. Khademhosseini, J. Yeh, S. Jon, G. Eng, K. Y. Suh, J. A. Burdick, and R. Langer, "Molded polyethylene glycol microstructures for capturing cells within microfluidic channels," Lab on a Chip, vol. 4, pp. 425-430, 2004.
    [31] H. Tani, K. Maehana, and T. Kamidate, "Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network," Analytical Chemistry, vol. 76, pp. 6693-6697, Nov 15 2004.
    [32] A. Revzin, R. G. Tompkins, and M. Toner, "Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass," Langmuir, vol. 19, pp. 9855-9862, Nov 11 2003.
    [33] N. Chronis and L. P. Lee, "Electrothermally activated SU-8 microgripper for single cell manipulation in solution," Journal of Microelectromechanical Systems, vol. 14, pp. 857-863, Aug 2005.
    [34] C. W. Li, C. N. Cheung, J. Yang, C. H. Tzang, and M. S. Yang, "PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters," Analyst, vol. 128, pp. 1137-1142, 2003.
    [35] J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, "Review of cell and particle trapping in microfluidic systems," Anal Chim Acta, vol. 649, pp. 141-57, Sep 7 2009.
    [36] M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, and L. P. Lee, "A single cell electroporation chip," Lab on a Chip, vol. 5, pp. 38-43, 2005.
    [37] A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, vol. 235, pp. 1517-20, Mar 20 1987.
    [38] "http://www.physics.uq.edu.au/people/nieminen/trapping.html."
    [39] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, Jul 21 2005.
    [40] C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, "Microfluidics technology for manipulation and analysis of biological cells," Anal Chim Acta, vol. 560, pp. 1-23, Feb 23 2006.
    [41] H. Li and R. Bashir, "Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes," Sensors and Actuators B: Chemical, vol. 86, pp. 215-221, 2002.
    [42] H. Sedgwick, F. Caron, P. B. Monaghan, W. Kolch, and J. M. Cooper, "Lab-on-a-chip technologies for proteomic analysis from isolated cells," J R Soc Interface, vol. 5 Suppl 2, pp. S123-30, Oct 6 2008.
    [43] W. H. Tan and S. Takeuchi, "A trap-and-release integrated microfluidic system for dynamic microarray applications," Proc Natl Acad Sci U S A, vol. 104, pp. 1146-51, Jan 23 2007.
    [44] D. Di Carlo and L. P. Lee, "Dynamic single-cell analysis for quantitative biology," Analytical Chemistry, vol. 78, pp. 7918-25, Dec 1 2006.
    [45] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, "Microfluidic control of cell pairing and fusion," Nat Methods, vol. 6, pp. 147-52, Feb 2009.
    [46] T. Teshima, H. Ishihara, K. Iwai, A. Adachi, and S. Takeuchi, "A dynamic microarray device for paired bead-based analysis," Lab on a Chip, vol. 10, pp. 2443-8, Sep 21 2010.
    [47] J. Wang and C. Lu, "Microfluidic cell fusion under continuous direct current voltage," Applied Physics Letters, vol. 89, Dec 4 2006.
    [48] B. Techaumnat, K. Tsuda, O. Kurosawa, G. Murat, H. Oana, and M. Washizu, "High-yield electrofusion of biological cells based on field tailoring by microfabricated structures," IET Nanobiotechnol, vol. 2, pp. 93-9, Dec 2008.
    [49] M. Gel, S. Suzuki, Y. Kimura, O. Kurosawa, B. Techaumnat, H. Oana, and M. Washizu, "Microorifice-based high-yield cell fusion on microfluidic chip: electrofusion of selected pairs and fusant viability," IEEE Trans Nanobioscience, vol. 8, pp. 300-5, 2009.
    [50] Y. Cao, J. Yang, Z. Q. Yin, W. S. Hou, X. L. Zheng, N. Hu, J. Yang, R. Xu, and R. Q. Zhang, "Electric field simulation of high-throughput cell electrofusion chip," Chinese Journal of Analytical Chemistry, vol. 36, pp. 593-598, May 2008.
    [51] N. Hu, J. Yang, X. L. Zheng, Z. Q. Yin, H. W. Xu, X. G. Zhang, Y. Cao, J. Yang, B. Xia, R. Xu, J. W. Yan, and F. Jiang, "Polyimide Membrane Based Flexible Cell-electrofusion Chip," Chinese Journal of Analytical Chemistry, vol. 37, pp. 1247-1250, Aug 2009.
    [52] Y. Zhan, J. Wang, N. Bao, and C. Lu, "Electroporation of cells in microfluidic droplets," Analytical Chemistry, vol. 81, pp. 2027-31, Mar 1 2009.
    [53] J. Y. Yang, D. Y. Cao, L. Y. Ma, and W. C. Liu, "Dendritic cells fused with allogeneic hepatocellular carcinoma cell line compared with fused autologous tumor cells as hepatocellular carcinoma vaccines," Hepatology Research, vol. 40, pp. 505-513, May 2010.
    [54] P. Guermonprez, J. Valladeau, L. Zitvogel, C. Thery, and S. Amigorena, "Antigen presentation and T cell stimulation by dendritic cells," Annu Rev Immunol, vol. 20, pp. 621-67, 2002.
    [55] N. Normanno, M. R. Maiello, and A. De Luca, "Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs): simple drugs with a complex mechanism of action?," J Cell Physiol, vol. 194, pp. 13-9, Jan 2003.
    [56] I. Okamoto, L. C. Kenyon, D. R. Emlet, T. Mori, J. Sasaki, S. Hirosako, Y. Ichikawa, H. Kishi, A. K. Godwin, M. Yoshioka, M. Suga, M. Matsumoto, and A. J. Wong, "Expression of constitutively activated EGFRvIII in non-small cell lung cancer," Cancer Sci, vol. 94, pp. 50-6, Jan 2003.
    [57] H. R. Marsden, I. Tomatsu, and A. Kros, "Model systems for membrane fusion," Chemical Society Reviews, vol. 40, pp. 1572-1585, 2011.
    [58] I. P. Sugar, W. Forster, and E. Neumann, "Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation," Biophys Chem, vol. 26, pp. 321-35, May 9 1987.
    [59] M. Sancho, G. Martinez, and C. Martin, "Accurate dielectric modelling of shelled particles and cells," Journal of Electrostatics, vol. 57, pp. 143-156, Feb 2003.
    [60] J. H. Chung, Y. J. Kim, and E. Yoon, "Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures," Applied Physics Letters, vol. 98, Mar 21 2011.
    [61]"http://www.bcrc.firdi.org.tw/BSAS_cart/controller?event=SEARCH&bcrc_no=60040."

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE