簡易檢索 / 詳目顯示

研究生: 姜文揚
Wen-Yang Chiang
論文名稱: 使用體心堆積和交錯型半球取樣法及離散頻譜傅立葉轉換重建法於擴散頻譜攝影
Diffusion Spectrum Imaging Using Body-Center-Cubic and Half-and-Interlaced-Spherical Sampling Scheme with Discrete Spectrum Fourier Transform Reconstruction
指導教授: 彭明輝
Ming-Hwei Perng
曾文毅
Wen-Yih Isaac Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 96
中文關鍵詞: 體心堆積最佳化取樣晶格交錯型半球取樣半傅立葉法減少取樣時間離散頻譜傅立葉轉換次空間重建擴散頻譜攝影組織纖維走向圖
外文關鍵詞: body-center-cubic, optimal sampling lattice, half-and-interlaced-spherical acquisition, half-Fourier method, sampling time reduction, discrete spectrum Fourier transform, sub-voxel reconstruction, diffusion spectrum imaging, tractography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在提出一些不同於傳統方式的訊號取樣法應用於擴散頻譜攝影(diffusion spectrum imaging, DSI)。使用這些取樣法,理論上將能縮減60%的取樣時間。
    為了減少擴散頻譜攝影的訊號擷取時間,本文首先將提出均勻分佈的體心堆積(body-center-cubic, BCC)取樣晶格(sampling lattice)取樣法。對於頻譜是圓球型有限(spherical band-limited)的訊號,使用體心堆積取樣晶格取樣法將能提供相較於傳統笛卡兒(Cartesian)取樣晶格取樣法高30%的取樣效率。由於擴散頻譜攝影的水分子運動機率密度函數同樣是圓球型有限,故應用體心堆積取樣晶格取樣法於其頻域Q空間,理論上能夠減少30%擴散頻譜攝影的資料量同時意味著縮短30%的訊號擷取時間。
    由於水分子擴散的機率密度函數(probability density function, PDF)為正值,所以半傅立葉方法(half-Fourier method)也可以應用在擴散頻譜攝影中,即只要在Q空間中擷取半圓球內的訊號即可。如此一來擴散頻譜攝影的訊號擷取時間得以經由半傅立葉方法再縮短40~50%。然而Q空間訊號可能存在著中心偏移(center-shift)的問題,所以本文提出交錯型半球取樣法(half-and-interlaced-spherical sampling scheme)來實現半傅立葉方法並提供校正中心偏移的能力。
    另外本文提出了離散頻譜傅立葉轉換(discrete spectrum Fourier transform, DSFT)重建法使得空間中任意位置的機率密度函數得以不經由內差法而直接求取其值來解決次體積(sub-voxel)重建的問題。
    經由實驗可發現,合併使用體心堆積和交錯型半球取樣法以及離散頻譜傅立葉轉換重建法得以減少80%擴散頻譜攝影的資料擷取時間,並提供合理的組織纖維走向圖(tractography)。


    This thesis presents some innovative techniques useful for the diffusion spectrum imaging (DSI) in the sense that they can be applied together to significantly reduce the data acquisition time up to 60% theoretically.
    In order to shorten the data acquisition time of diffusion spectrum imaging (DSI), homogeneous q-space sampling using body-center-cubic (BCC) lattice is proposed. For spherical band-limited 3D signal, the sampling efficiency of BCC is 30% higher than that of conventional Cartesian scheme. Because probability density function (PDF) of water molecular motion of DSI is spherical band-limited, BCC sampling scheme is applicable and may reduce sampling data up to 30% theoretically, which means 30% reduction of data acquisition time.
    Since probability density function of water molecular motion is positive, half-Fourier method can be introduced, i.e. only q-space data within half sphere is sufficient to reconstruct PDF, for additional 40~50% of acquisition time reduction. Because there might be center-shift problem for DSI data, half-and-interlaced-spherical acquisition scheme (HIS) is proposed for correcting this artifacts when half-Fourier method is used.
    Discrete spectrum Fourier transform (DSFT) is proposed to reconstruct PDF directly on arbitrarily selected positions without interpolation and therefore solves the encountered sub-voxel-reconstruction problem.
    Experiments show that reasonable results of tractography can be achieved with 80% reduction of data acquisition time using BCC and HIS sampling scheme and DSFT reconstruction.

    中文論文目次: 摘要 i 誌謝 iii 目錄 iv 第一章 引言 -1- 第二章 使用體心堆積和交錯型半球取樣法於Q空間資料取樣 -6- 第三章 使用離散頻譜傅立葉轉換於擴散機率密度函數的重建 -10- 第四章 結論與未來工作 -13- 參考文獻 -17- 英文論文目次: Acknowledgements I Abstract II Contents IV Figures VII Chapter 1. Introduction 1 1.1 Research Background 2 1.2 Literatures Review 3 1.2.1 Real-Image-Space-Based Acquisition-Time Reduction 5 1.2.2 Q-Space-Based Acquisition-Time Reduction 7 1.2.3 Efficient Signal Sampling 8 1.3 Scope of the thesis 9 Chapter 2. q-Space Data Reduction Using Body-Center-Cubic and Half-and-Interlaced-Spherical Sampling Scheme 11 2.1 Q-Space Sampling Using Body-Center-Cubic Sampling Lattice 13 2.2 Two-Stage Numerical Method Solving Coordinate of Regular Sampling Lattice of DSI 15 2.3 Q-Space Sampling Using Half-and-Interlaced-Spherical Sampling Scheme 17 2.4 Calculation for Amount of Center-Shift of q-Space Data 18 Chapter 3. Reconstruction of Probability Density Function Using Discrete Spectrum Fourier Transform (DSFT) 19 3.1 Theorems and Proofs of Discrete Spectrum Fourier Transform 19 3.1.1 Definition 1. Fourier Transform [44] 19 3.1.2 Definition 2. Inverse Fourier Transform [44] 19 3.1.3 Lemma 1. The Convergence of Fourier Transform [45] 19 3.1.4 Definition 3. Definite Integral [46] 19 3.1.5 Definition 4. 19 3.1.6 Definition 5. 19 3.1.7 Theorem 1. 19 3.1.8 Corollary 1 19 3.1.9 Definition 6. Discrete Fourier Transform [47] 19 3.1.10 Definition 7. Discrete Inverse Fourier Transform [47] 19 3.1.11 Theorem 2. 19 3.1.12 Definition 8. Zero-Padding [48] 19 3.1.13 Theorem 3. 19 3.2 Physical and Mathematical Interpretation of Discrete Spectrum Fourier Transform 19 3.3 Correlation between Discrete Fourier Transform and Discrete Spectrum Fourier Transform 19 3.4 Implementation of Discrete Spectrum Fourier Transform on Current MR System 19 3.5 Correlation between Zero-Padding and Discrete Spectrum Fourier Transform 19 3.6 Conclusions 19 Chapter 4. Experiments and Analysis 19 4.1 2D MR Image Using Hexagonal Sampling Lattice over k-Space 19 4.2 2D MR Image Using Hexagonal-Like Sampling Lattice over K-Space 19 4.3 2D MR Up-Sampling Using DSFT / Interpolation-Based Methods 19 4.4 3D PDF and ODF Reconstruction Using Cartesian / BCC Sampling Lattice 19 4.5 3D PDF and ODF Reconstruction Using BCC and HIS 19 Chapter 5. Conclusions and Future Works 19 References 19 Appendix A. DSI Physics 19 A.1 Diffusion Spectrum Imaging, DSI [2][38] 19

    中文論文參考文獻:
    1. P. J. Basser, J. Mattiello and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Journal of Biophysics, (66), pp. 259–267, 1994.
    2. V. J. Wedeen, T. G. Reese, D. S. Tuch, M. R. Weigel, J. G. Dou, R. M. Weiskof and D. Chessler, “Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI,” in Proceedings of the 9th Annual Meeting of ISMRM, Denver, USA, 2000, pp. 82.
    3. M. E. Moseley, Y. Cohen and J. Kucharczyk, “Diffusion- weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology, (176), pp. 439–445, 1990;
    4. L-W. Kuo, V. J. Wedeen, J-C. Weng, T. G. Reese, J-H. Chen and W-Y. I. Tseng, “Using Track Similarity to Determine Optimum Sequence Parameters for Diffusion Spectrum Imaging,” in Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, Florida, USA, 2005.
    5. Z. P. Liang, B. Madore, G. H. Glover and N. J. Pelc, “Fast algorithms for GS-model-based image reconstruction in data-sharing Fourier imaging,” in IEEE Transactions of Medical Image, vol. 22, (8), pp. 1026-30, Aug, 2003.
    6. Y. Natsuaki, M. H. Buonocore, T. E. Nordahl and R. E. Salo, “Optimization of k-Space Undersampled DW PROPELLER Using Fast RIGR Algorithm,” in Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006.
    7. M-C. Chou, H-W. Chung, T-Y. Huang, H-S. Liu, C-Y. Wang, M-L. Wu and C-Y. Chen,“Q-ball imaging with PROPELLER acceleration,” in Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006.
    8. D.A. Feinberg, T. G. Reese and V. J. Wedeen, “Simultaneous echo refocusing in EPI,” Magnetic Resonance in Medicine, vol. 48, (1), pp. 1-5, 2002.
    9. C. P. Lin, W-Y. I. Tseng, J. C. Weng, V. J. Wedeen and J. H. Chen, “Reduced Encoding of Diffusion Spectrum Imaging with Cross-term Correction,” Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS, pp. 561-563 ,20-22 March, 2003.
    10. J-C. Weng, V. J. Wedeen, J-H. Chen, T. G. Reese, L-W. Kuo and W-Y. I. Tseng, “Optimization of Diffusion Spectrum Magnetic Resonance Imaging for Clinical Scanner,” in Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan, 2004.
    11. T. Theussl, T. Moller and M. E. Groller, ”Optimal Regular Volume Sampling,” in Proceedings of the IEEE visualization Conference, San Diego, CA, USA, pp. 91-98, 2001.
    12. D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing. Prentice Hall, Inc., Englewood Cliffs, NJ, 1st edition, 1984.
    13. V. J. Wedeen, P. Hagmann, W-Y. I. Teng, T. G. Reese and R. M. Weisskoff, “Mapping Complex Tissue Architecture With Diffusion Spectrum Magnetic Resonance Imaging,” Magnetic Resonance in Medicine, vol. 54, pp. 1377-1385, 2005.

    英文論文參考文獻:
    1. P. J. Basser, J. Mattiello and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Journal of Biophysics, (66), pp. 259–267, 1994.
    2. V. J. Wedeen, T. G. Reese, D. S. Tuch, M. R. Weigel, J. G. Dou, R. M. Weiskof and D. Chessler, “Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI,” in Proceedings of the 9th Annual Meeting of ISMRM, Denver, USA, 2000, pp. 82.
    3. M. E. Moseley, Y. Cohen and J. Kucharczyk, “Diffusion- weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology, (176), pp. 439–445, 1990;
    4. L-W. Kuo, V. J. Wedeen, J-C. Weng, T. G. Reese, J-H. Chen and W-Y. I. Tseng, “Using Track Similarity to Determine Optimum Sequence Parameters for Diffusion Spectrum Imaging,” in Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, Florida, USA, 2005.
    5. J. S. Campbell, K. Siddiqi, V. V. Rymar, A. F. Sadikot and G. B. Pike, “Flow-based fiber tracking with diffusion tensor and q-ball data: validation and comparison to principal diffusion direction techniques,” Neuroimage, vol. 27, (4), pp. 725-36, 2005.
    6. M. Perrin, C. Poupon, B. Rieul, P. Leroux, A. Constantinesco, J. F. Mangin and Lebihan., “Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner,” in Philos Trans R Soc Lond B Biol Sci., 2005, vol. 360, (1457), pp. 881-91.
    7. D. S. Tuch, J. J. Wisco, M. H. Khachaturian, L.B. Ekstrom, R. Kotter and W. Vanduffel, “Q-ball imaging of macaque white matter architecture,” in Philos Trans R Soc Lond B Biol Sci., 2005, vol. 360, (1457), pp. 869-79.
    8. O. Mor, O. Nativ, A. Stein, L. Novak, D. Lehavi, Y. Shiboleth, A. Rozen, E. Berent, L. Brodsky, E. Feinstein, A. Rahav, K. Morag, D. Rothenstein, N. Persi, Y. Mor, R. Skaliter and A. Regev, “Molecular analysis of transitional cell carcinoma using cDNA microarray,” Oncogene, vol. 22, (48), pp. 7702-10, 2003.
    9. Y. Mor, I. Leibovitch, A. Fridmans, A. Farkas, P. Jonas and J. Ramon, “Late post-reimplantation ureteral obstruction during pregnancy: a transient phenomenon?” Journal of Urology, vol. 170, (3), pp. 845-848, September, 2003.
    10. Y. Mor, I. Leibovitch, R. Zalts, D. Lotan, P. Jonas and J. Ramon, “Analysis of the long-term outcome of surgically corrected vesico-ureteric reflux,” BJU International, vol. 92, (1), pp. 97-100(4), July 2003
    11. M. Filippi, M. Cercignani, M. Inglese, M. A. Horsfield and G. Comi, “Diffusion tensor magnetic resonance imaging in multiple sclerosis,” Neurology, vol. 56, (3), pp. 304-11, 2001.
    12. M. Rovaris, A. Gass, R. Bammer, S. J. Hickman, O. Ciccarelli, D. H. Miller and M. Filippi, “Diffusion MRI in multiple sclerosis,” Neurology, vol. 65, (10), pp. 1526-32, 2005.
    13. C. Glaser, “New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging,” Radiologic Clinics of North America, vol. 43, (4), pp. 641-53, vii, 2005.
    14. G.J. Parker, “Analysis of MR diffusion weighted images,” The British Journal of Radiology, vol. 77, pp. 176-85, 2004.
    15. J.S. Duncan, “Seizure-induced neuronal injury: human data,” Neurology, vol. 59, pp. 15-20, 2002.
    16. J. G. Pipe, V. G. Farthing and K. P. Forbes., “Multishot diffusion-weighted FSE using PROPELLER MRI.” Magnetic Resonance in Medicine, vol. 47, (3), pp. 42-52, March, 2002.
    17. J. Deng, A. Stemmer, F. H. Miller, T. K. Rhee, R. Salem, D. Li, R. A. Omary and A. C. Larson, “Multi-shot Diffusion-Weighted PROPELLER MRI of the Abdomen,” in Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006.
    18. K. Arfanakis, A. A. Tamhane, J. G. Pipe and M. A. Anastasio, “k-space undersampling in PROPELLER imaging,” Magnetic Resonance in Medicine, vol. 53, (3), pp. 675-83, March 2005.
    19. Z. P. Liang, B. Madore, G. H. Glover and N. J. Pelc, “Fast algorithms for GS-model-based image reconstruction in data-sharing Fourier imaging,” in IEEE Transactions of Medical Image, vol. 22, (8), pp. 1026-30, Aug, 2003.
    20. Y. Natsuaki, M. H. Buonocore, T. E. Nordahl and R. E. Salo, “Optimization of k-Space Undersampled DW PROPELLER Using Fast RIGR Algorithm,” in Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006.
    21. M-C. Chou, H-W. Chung, T-Y. Huang, H-S. Liu, C-Y. Wang, M-L. Wu and C-Y. Chen,“Q-ball imaging with PROPELLER acceleration,” in Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006.
    22. T. G. Reese, T. Benner, R. Wang, D. A. Feinberg and V. J. Wedeen, “Halving Imaging Time of Whole Brain Diffusion Spectrum Imaging (DSI) Using Simultaneous Echo Refocusing (SER) EPI,” in Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006.
    23. D.A. Feinberg, T. G. Reese and V. J. Wedeen, “Simultaneous echo refocusing in EPI,” Magnetic Resonance in Medicine, vol. 48, (1), pp. 1-5, 2002.
    24. D.S. Tuch, T.G. Reese, M.R. Wiegell, N. Makris, J. W. Belliveau and V. J. Wedeen, “High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity,” Magnetic Resonance in Medicine, vol. 48, pp. 577-582, 2002.
    25. D. C. Alexander, G. J. Barker and S. R. Arridge, “Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data,” Magnetic Resonance in Medicine, vol. 48, pp. 331-340, 2002.
    26. L. Frank, “Anisotropy in high angular resolution diffusion-weighted MRI,” Magnetic Resonance in Medicine, vol. 45, pp. 935-939, 2001.
    27. E. Ozarslan and T. H. Mareci, “Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging,” Magnetic Resonance in Medicine, vol. 50, pp. 955-965, 2003.
    28. K. M. Jansons and Alexander DC, “Persistent angular structure: new insights from diffusion magnetic resonance imaging data,” Inverse Problems, vol. 19, pp. 1031-1046, 2003.
    29. David S. Tuch, “Q-Ball Imaging,” Magnetic Resonance in Medicine, vol. 52, pp. 1358-1372, 2004.
    30. D. P. Peterson and D. Middleton, “Sampling and Reconstruction of Wave-Number-Limited functions in N-dimensional Euclidean Spaces,” Information and Control, vol. 5, pp. 279-323, 1962.
    31. J. C. Ehrhardt, “Hexagonal Fourier Transform with Rectangular Output,” in IEEE Transactions on Signal Processing, vol. 41, (3), March, pp. 1469-1472, 1993.
    32. J. C. Ehrhardt, “MR data acquisition and reconstruction using efficient sampling schemes,” in IEEE Trans. Med. Imaging, vol. 9, pp. 305-309, 1990.
    33. D. P. Peterson and D. Middleton, “Sampling and Reconstruction of Wave-number Limited Functions in n-dimensional Euclidean Spaces,” Information and Control, vol. 5, pp. 279-323, 1962.
    34. N. J. A. Sloane, “The Sphere Packing Problem,” in ICM: Proceedings of the International Congress of Mathematicians, 1998.
    35. T. Theussl, T. Moller and M. E. Groller, ”Optimal Regular Volume Sampling,” in Proceedings of the IEEE visualization Conference, San Diego, CA, USA, pp. 91-98, 2001.
    36. D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing. Prentice Hall, Inc., Englewood Cliffs, NJ, 1st edition, 1984.
    37. Yao Wang, Jorn Ostermann and Ya-Qin Zhang, Video Processing and Communications, , Prentice Hall, Upper Saddle River, New Jersey 07458, pp. 53-80.
    38. V. J. Wedeen, P. Hagmann, W-Y. I. Teng, T. G. Reese and R. M. Weisskoff, “Mapping Complex Tissue Architecture With Diffusion Spectrum Magnetic Resonance Imaging,” Magnetic Resonance in Medicine, vol. 54, pp. 1377-1385, 2005.
    39. C. P. Lin, W-Y. I. Tseng, J. C. Weng, V. J. Wedeen and J. H. Chen, “Reduced Encoding of Diffusion Spectrum Imaging with Cross-term Correction,” Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS, pp. 561-563 ,20-22 March, 2003.
    40. J-C. Weng, V. J. Wedeen, J-H. Chen, T. G. Reese, L-W. Kuo and W-Y. I. Tseng, “Optimization of Diffusion Spectrum Magnetic Resonance Imaging for Clinical Scanner,” in Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan, 2004.
    41. P. Margosian, F. Schmitt, and D. E. Purdy, “Faster MR imaging: Imaging with half the data,” Health Care Instrum., vol. 1, pp. 195-197, 1986.
    42. Z-P. Liang and P. C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective, Bellingham, Wash.: SPIE Optical Engineering Press; New York: IEEE Press., 2000, pp. 322.
    43. C. Liu, R. Bammer and M. E. Moseley, “Limitations of Apparent Diffusion Coefficient-Based Models in Characterizing Non-Gaussian Diffusion,” Magnetic Resonance in Medicine, vol. 54, pp. 419-428, 2005.
    44. Hanna, J. Ray, Fourier Series and Integrals of Boundary Value Problems, Pure and Applied Mathematics, New York: Wiley, 1982. pp. 102-108.
    45. J. W. Brown, R. V. Churchill, Fourier series and boundary value problems, 5th ed., New York: McGraw-Hill, 1993.
    46. Ross L. Finney, George B. Thomas, Jr. with the collaboration of Maurice D. Weir, Calculus, 2nd ed., Reading, Mass.: Addison-Wesley Pub. Co., 1994. pp287
    47. A. V. Oppenheim, R. W. Schafer with J. R. Buck, Discrete-Time Signal Processing, 2nd ed., Upper Saddle River, N.J.: Prentice Hall, 1999. pp. 541-600.
    48. S. J. Orfanidas, Introduction to Signal Processing, Prentice Hall, pp. 490-491, 1966.
    49. Erwin Hahn, Journal of Geophysical Research, vol. 65, pp. 776-777, 1960

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE