研究生: |
謝文國 Wen-Kuo Hsieh |
---|---|
論文名稱: |
相位影像與高分辨穿透式複數電鏡顯微學之研究 Studies in Phase Image and Complex High Resolution Transmission Electron Microscopy |
指導教授: |
開執中
Ji-Jung Kai 陳福榮 Fu-Rong Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | TEM 、相位回復 、最大熵解捲 、pn接面 |
外文關鍵詞: | TEM, Phase retrieval, MEM deconvolution, pn junction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討穿透式電子顯微鏡在相位影像回復以及空間分辨率改善的問題,論文從電鏡的相位問題著手,文中包含現今幾種相位回復方法的介紹與不同方法間優缺點的比較。本研究利用最大熵解捲法(maximum entropy de-convolution method)來解強度傳遞方程(transport of intensity equation)二次微分方程式,求得TIE方程式解即可回復電子波相位的訊息。我們將這種相位回復的方法應用在半導體製程中多孔隙的低介電材料與pn接面(junction) 二維型態分析。 我們以相位回復的技術為基礎,進一步解決透鏡系統像差修正與試片出口波(exit wave)重構的問題,由於經過像差修正後的出口波非常接近試片實際的結構,因此出口波重建的技術可以視為是一種實空間的直接法。這種實空間的直接法包含了在影像平面利用最大熵解捲法解強度傳遞方程(TIE/MEM)及出口波重構,由於出口波是從影像平面的複數電子波完整的訊息直接重建,從影像到出口波的演算過程中沒有以前的舊方法所存在一些限制性的基本假設性問題。重建的試片出口波在某種程度上去除像差影響,影像可以回復較細微的結構訊息,但是分辨率仍在電鏡訊息極限之下。我們藉由相位外推的方法將分辨率外推,使得影像分辨率超越信息極限的,利用複數形式的最大熵法並結合Gerchberg-Saxton演算法的概念,將相位訊息外推到較高的頻率空間,可得到更佳的分辨率。
This thesis examines problems in phase retrieval and resolution improvement in transmission electron microscopy. It begins with the study of phase and the phase problems in microscopy. In this context a number of methods of phase retrieval are introduced and evaluated. The maximum entropy de-convolution method (MEM) is employed to solve the transport of intensity equation (TIE) for phase retrieval problems. . The theoretical basis of this method is presented along with its potential applications in the quantitative phase analysis of porous low-k dielectric materials and of p-n junction profiles in advanced IC devices using a transmission electron microscope. Using the phase retrieval method as an essential tool, the thesis continues with a study of aberration corrected and exit wave reconstructed problems. As the aberration corrected exit wave is closely related to the structure of object this technique of exit wave reconstruction can be referred as a “direct method” in real space. The direct method in real space involves the use of a novel method to retrieve the phase in the image plane using Transport of Intensity Equation/Maximum Entropy Method (TIE/MEM) and exit wave reconstruction by self-consistent propagation. Since the exit wave is restored from the complex signal in the image planes, no image model between the exit wave and image is assumed. Finally the structural information in the reconstructed exit wave is then further extended by a “complex” maximum entropy method as a direct method in reciprocal space to extrapolate the phase to higher frequencies.
Reference of Chapter 2
[1] J. M. Huntley. Three-dimensional noise-immune phase unwrapping algorithm. Applied Optics, 40 (2001) 3901-3908.
[2] U. Spagnolini. 2-D phase unwrapping and phase abasing. Geophysics, 58(1993)1324-1334.
[3] M. V. Berry and M. R. Dennis. Phase singularities in isotropic random waves. Proc. Roy. Soc. Lond., A456 (2000) 2059-2079.
[4] R. Guenther. Modern optics. Wiley, USA, (1990).
[5] L. J. Allen, H. M. L. Faulkner, M. P. Oxley, and D. Paganin. Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy. Ultramicroscopy, 88 (2001) 85-97.
[6] I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. ´Sliwa. Motion of vortex lines in quantum mechanics. Phys. Rev. A, 61 (2000) 032110.
[7] I. Freund. Optical vortex trajectories. Opt. Comm., 181 (2000) 19-33.
[8] I. Freund and D. A. Kessler. Critical point trajectory bundles in singular wave fields. Opt. Comm., 187 (2001) 71-90.
[9] L. J. Allen, H. M. L. Faulkner, and H. Leeb. Inversion of dynamical electron diffraction data including absorption. Acta Cryst., A56 (2000) 119-126.
[10] D. Van Dyck, H. Lichte, K. D. van der Mast, Ultramicroscopy, 64 (1996) 1.
[11] W. Coene, G. Janssen, M. Op De Beeck, D. Van Dyck, Phys. Rev. Lett., 69 (1992) 3743.
[12] H. Lichte and B. Freitag , Ultramicroscopy, 81 (3-4) (2000) 177
[13] H. Lichte and M. Lehmann, Adv. Imag. Elect. Phys., 123 (2002) 225.
[14] D. Van Dyck, H. Lichte and J. C. H. Spence, Ultramicroscopy, 81 (3-4) (2000) 187.
[15] Introduction to Electron Holography, edited by E. Völkl, E. F. Allard and D. C. Joy (Kluwer Academic Press, New York, 1999)
[16] D. Van Dyck and W. Coene. A new procedure for wave function restoration in high resolution electron microscopy. Optik, 77 (1987) 125-128.
[17] W. O. Saxton. What is the focus variation method? Is it new? Is it direct? Ultramicroscopy, 55 (1994) 171-181.
[18] D. Van Dyck and M. Op de Beeck. New direct methods for phase and structure retrieval by HREM. In 12th International Congress on Electron Microscopy, pages 26–27, Seattle, 1990.
[19] H. Lichte. Electron image plane off-axis holography of atomic structures. In T. Mulvey and C. J. R. Sheppard, editors, Advances in Optical and Electron Microscopy, volume 12, pages 25–91. Academic Press, London, 1991.
[20] E. J. Kirkland. Improved high resolution image processing of bright field electron micrographs. I. Theory. Ultramicroscopy, 15 (1984) 151-172.
[21] A. Tonomura. Applications of electron holography. Rev. Mod. Phys.,
59 (1987) 639-669.
[22] W. Coene, G. Janssen, M. Op de Beeck, and D. Van Dyck. Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Lett., 69 (1992) 3743-3746.
[23] M. A. Gribelyuk and J. L. Hutchison. On the iterative restoration of the exit plane wave function from defocus series in HREM. Ultramicroscopy, 45 (1992) 127-143.
[24] D. Van Dyck and A. F. de Jong. Ultimate resolution and information
in electron microscopy: general principles. Ultramicroscopy, 47 (1992) 266-281.
[25] A. I. Kirland, W. O. Saxton, K. L. Chau, K. Tsuno and M. Kawasaki, Ultramicroscopy, 57 (1995) 355.
[26] A. I. Kirkland, W. O. Saxton, and R. R. Meyer. Indirect super-resolved microscopy: aberration compensation and image reconstruction of tiltazimuth data. In A. I. Kirkland and P. D. Brown, editors, The Electron, pages 426–436. London Institute of Metals, 1998.
[27] P. D. Nellist, B. C. McCallum, and J. M. Rodenburg. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature, 374 (1995) 630-632.
[28] P. D. Nellist and J. M. Rodenburg. Electron ptychography I: experimental demonstration beyond the conventional resolution limits. Acta Cryst, A54 (1998) 49-60.
[29] T. Plamann and J. M. Rodenburg. Electron ptychography. II. Theory of 3-dimensional propagation effects. Acta Cryst., A54 (1998) 61-73.
[30] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35(2), (1972) 237-246.
[31] W. O. Saxton, in: Advances in Electronics and Electron Physics, Computer Techniques for Image Processing in Electron Microcopy (Academic Press, New York, 1978)
[32] L. J. Allen, H. M. L. Faulkner, M. P. Oxley, and D. Paganin. Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy. Ultramicroscopy, 88 (2001) 8597.
[33] L. J. Allen, H. M. L. Faulkner, M. P. Oxley, K. A. Nugent, and D. Paganin. Phase retrieval from images in the presence of first-order vortices. Phys. Rev. E, 63 (2001) 037602.
[34] J. C. H. Spence, M. Howells, L. D. Marks, and J. Miao. Lensless imaging: a workshop on “new approaches to the phase problem for non-periodic objects”. Ultramicroscopy, 90 (2001) 1-6.
[35] A. M. J. Huiser, A. J. J. Drenth, and H. A. Ferwerda. On phase retrieval in electron microscopy from image and diffraction pattern. Optik, 45 (1976) 303-316.
[36] A. M. J. Huiser and H. A. Ferwerda. On the problem of phase retrieval in electron microscopy from image and diffraction pattern. II. On the uniqueness and stability. Optik, 46 (1976)407-420.
[37] A. M. J. Huiser, P. van Toorn, and H. A. Ferwerda. On the problem of phase retrieval in electron microscopy from image and diffraction pattern. III. The development of an algorithm. Optik, 47 (1977)1-8.
[38] J. Miao, P. Charalambous, J. Kirz, and D. Sayre. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized noncrystalline specimens. Nature, 400 (1999) 342-344,.
[39] J. Miao, J. Kirz, and D. Sayre. The oversampling phasing method. Acta Cryst., D56 (2000) 1312-1315.
[40] J. Miao and D. Sayre. On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Cryst., A56 (2000) 596-605.
[41] U. Weierstall, Q. Chen, J. C. H. Spence, M. R. Howells, M. Isaacson, and R. R. Panepucci. Image reconstruction from electron and X-ray diffraction patterns using iterative algorithms: experiment and simulation. Ultramicroscopy, 90 (2002) 171-195.
[42] H. Nyquist. Certain topics in telegraph transmission theory. Trans. AIEE, 47 (1928) 617-644.
[43] O. Scherzer, J. Appl. Phys., 20 (1949) 20.
[44] J. M. Cowley. Diffraction Physics. North Holland, Amsterdam, third revised edition, 1995.
[45] H. Rose, Optik, 85 (1) (1990) 19.
[46] M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius and K. Urban, Ultramicroscopy, 23 (1998) 768.
[47] W. O. Saxton. A new way of measuring microscope aberrations. Ultramicroscopy, 81 (2001) 41-45.
[48] W. O. Saxton. Simple prescriptions for measuring three-fold astigmatism. Ultramicroscopy, 58 (1995) 239-243.
[49] R. R. Meyer, A. I. Kirkland, and W. O. Saxton. A new method for the determination of the wave aberration function for high resolution TEM -1: measurement of the symmetric aberrations. Ultramicroscopy, 64 (1996) 109.
[50] P. Schiske, in: P. Hawkes (Ed.), Image Processing and Computer-Aided Design in Electron Optics, 1973
[51] W. O. Saxton, Microsc. Spectrosc. Electron., 5 (1980) 665.
[52] D. Van Dyck, and M. Op De Beeck, in: Proc. 12th Int. Congr. for Electron Microscopy, Scattle (1990) p.26
[53] M. Op De Beeck, D.Van Dyck and W. Coene, Ultramicroscopy, 64 (1996) 167.
[54] D.Van Dyck, M. Op De Beeck and W. Coene, Optik, 93 (1993) 103.
[55] M. R. Teague. Deterministic phase retrieval: a Greens function solution. J. Opt. Soc. Am., 73 (1983) 1434-1441.
[56] L. Reimer. Transmission Electron Microscopy. Springer-Verlag, Berlin,1984.
[57] V. N. Mahajan. Optical imaging and Aberrations. Part 1, Ray geometrical optics. SPIE Optical Engineering press, Washington, 1998.
[58] V. N. Mahajan. Optical imaging and Aberrations. Part 2, Wave diffraction optics. SPIE Optical Engineering press, Washington, 2001.
[59] O. Scherzer, Optik., 2 (1947) 114.
[60] H. Rose, Optik., 25 (1967) 587.
[61] H. Rose, Optik., 34 (1971) 285.
[62] H. Hoops, G. Kuck, and O. Scherzer, Optik., 48 (1977) 225.
[63] M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, and K. Urban. A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy, 75 (1998) 53-60.
[64] H. Rose, Optik., 85 (1990) 19.
[65] M. Haider, G. Braunshausen and E. Schwan, Optik, 99 (1995) 167.
Reference of Chapter 3
[1] R. E. Dunin-Borkowski, M. R. Mccartney, B. Kardynal, S. S. P. Parkin, M. R. Scheinfein and D. J. Smith, Off-axis electron holography of patterned magnetic nanostructures, J. of Microscopy, 200(3) (2000)187-205
[2] W. D. Rau, P. Schwander, F. H. Baumann, W. Höppner, and A. Ourmazd, Two-dimensional mapping of the electrostatic potential in transistors by electron holography, Physical Review Letters, 82 (12) (1999)2614-2617
[3] M. R. McCartney and David J. Smith, Robert Hull and J. C. Bean, E. Voelkl and B. Frost, Direct observation of potential distribution across junctions using off-axis electron holography, Appl. Phys. Lett., 65 (20) 2603-2605
[4] M. A. Gribelyuk, M. R. McCartney, Jing Li, C. S. Murthy, P. Ronsheim, B. Doris, J. S. McMurray, S. Hegde and David J. Smith, Mapping of Electrostatic Potential in Deep Submicron CMOS Devices by Electron Holography, Physical Review Letters, 89 (2) (2002) 025502-1
[5] Zhouguang Wang, Takeharu Kato, Noriyoshi Shibata, and Tsukasa Hirayama, Naoko Kato, Katsuhiro Sasaki and Hiroyasu Saka, Characterizing an implanted Si’Si p– njunction with lower doping level by combined electron holography and focused-ion-beam milling, Appl. Phys. Lett. 81 (3) (2002) 478-480
[6] Zhou-Guang Wang, Naoko Kato, Katsuhiro Sasaki, Tsukasa Hirayama and Hiroyasu Saka, Electron holographic mapping of two-dimensional doping areas in cross-sectional device specimens prepared by the lift-out technique based on a focused ion beam, J.of Electron Microscopy, 53 (2) (2004) 115-119.
Reference of Chapter 4
[1] M. R. Teague. Deterministic phase retrieval: a Greens function solution. J. Opt. Soc. Am., 73 (1983) 1434-1441.
[2] D. Van Dyck and W. Coene, Optik, 77 (1987) 125
[3] Experimental High-Resolution Electron Microscopy, edited by J. C. H. Spence p.117.
[4] T. E. Gureyev, A. Roberts, and K. A. Nugent, J. Opt. Soc. Am. A12 (1995) 1932.
[5] T. E. Gureyev, A. Roberts, and K. A. Nugent, J. Opt. Soc. Am. A12 (1995) 1942.
[6] T. E. Gureyev, A. Roberts, and K. A. Nugent, J. Opt. Soc. Am. A13 (1996) 1670.
[7] T. E. Gureyev, and K. A. Nugent, Opt. Commun., 133 (1997) 339.
[8] K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett., 77 (1996) 2961.
[9] T. E. Gureyev, C. Raven, A. Snigirev, I. Snigirev, and S. W. Wilkins, J. Phys. D., 32 (1999) 563.
[10] Brendan E. Allman, Philips J. McMahon, Justine B. Tiller, Keith A. Nugent, David Paganin, Anton Barty, J. Opt. Soc. Am., 14 (2000) 1732.
[11] S. Bajt, A. Barty, K. A. Nugent, M. McCarteny, M. Wall, and D. Paganin, Ultramicroscopy, 83 (2000) 67
[12] Y. M. Zhu, V. V. Volkov, M. De Graef, J. Electron Microscopy, 50 (2001) 447
[13] L. J. Allen, H. M. L. Faulkner, M. P. Oxley, and D. Paganin. Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy. Ultramicroscopy, 88 (2001) 85-97.
[14] L. J. Allen, H. M. L. Faulkner, M. P. Oxley, K. A. Nugent, and D. Paganin. Phase retrieval from images in the presence of first-order vortices. Phys. Rev. E, 63 (2001) 037602.
[15] D. Paganin and K. A. Nugent. Non-interferometric phase imaging with partially-coherent light. Phys. Rev. Lett., 80 (1998) 2586-2589.
[16] G. B. Arfken and H. J. Weber. Mathematical methods for physicists. Academic Press, London, fourth edition, 1995.
[17] M. R. Spiegel. Mathematical handbook of formulas and tables. McGraw-Hill, New York, 1968.
[18] R. Wilczek and A. Drapatz, Astron. Astrophys., 142 (1985) 9
[19] T. J. Cornwell and K. F. Evans, Astron. Astrophys., 143 (1985) 77
[20] F. R. Chen, J. J. Kai, L. Chang, J. Y. Wang and W. J. Chen, J. Electron Microscopy ,48 (1999) 827
[21] F. R Chen, H. Ichinose, J. J. Kai, and L. Chang J. Electron Microscopy, 50 (2002) 529
[22] W. K. Hsieh, F. R. Chen, J. J. Kai and A. I. Kirkland, Resolution Extension and Exit Wave reconstruction in Complex HREM , Ultramicroscopy, 98 (2004) 99-114
[23] B. R. Frieden and A. Bajkova, Applied Optics, 33 (1994) 219
[24] N. Agmon, Y. Alhassid and R. D. Levine, J. Comp. Phys., 30 (1979) 250
[25] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35(2) (1972) 237-246.
[26] J. H. Chen, H. W. Zandbergen, D. Van Dyck, Atomic imaging in aberration-corrected high-resolution transmission electron microscopy, Ultramicroscopy, 98 (2-4) (2004) 81-97
[27] E. J. Kirkland. Improved high resolution image processing of bright field electron micrographs. I. Theory. Ultramicroscopy, 15 (1984) 151-172.
[28] E. J. Kirkland, B. M. Siegel, N. Uyeda and Y. Fujiyoshi, Ultramicroscopy, 17 (1985) 87
[29] J. W. Goodman in: Introduction to Fourier Optics, Physical and Quantum Electronic Series (McGraw-Hill, San Franciso, 1968) p.11
[30] W. O. Saxton, in: Advances in Electronics and Electron Physics, Computer Techniques for Image Processing in Electron Microcopy (Academic Press, New York, 1978) p.200
[31] M. van Heel, M. Schatz, E. Orlova, Ultramicroscopy, 46 (1992) 307
[32] R. C. Gonzalez and R. E. Woods, in: Digital Image Processing, (Addison-Wesley Press, 1992) p.109
[33] C. D. Kuglin and D. C. Hines, the phase correlation image alignment method, Proceedings of the IEEE International Conference on Cybernetic and Society, (1975) 163-165.
[34] E. T. Jaynes, Proc. IEEE 70 (1982) 939.
[35] J. P. Burg, presented at 37th Annual Meeting of the Society of Exploration Geophysicists, Oklahoma City, Okla.,1967; Ph.D. dissertation (Stanford University, Palo Alto, Calif.,1975).
[36] A. T. Bajkova, Astron. Astrophys.Trans., 1 (1992) 313.
Reference of Chapter 5
[1]O. Rodriguez, R. Saxena, W. J. Cho, et al., Diffusion of copper in nanoporous dielectric films, Industrial & Engineering Chemistry Research 44 (5) (2005)1220-1225.
[2] Y. Xin, Z. Y. Ning, Ye C, et al., The structural and dielectric properties of SiOx/a-C,F/SiOx multi-layer thin films deposited by microwave electron cyclotron resonance plasma method, Thin Solid Films, 472 (1-2)(2005) 44-48.
[3] D. Paganin, A. Barty, P. J. Mcmahon and K. A. Nugent, Quantitative phase-amplitude microscopy. III. The effects of noise, J. of Microscopy, 214 (2004)51-61
Reference of Chapter 6
[1] A. W. Sleight, Acta Chem. Scand., 20 (1966) 1102
[2] R. R. Meyer, A. I. Kirkland, and W. O. Saxton. A new method for the determination of the wave aberration function for high resolution TEM -1: measurement of the symmetric aberrations. Ultramicroscopy, 64 (1996) 109.
[3] W. M. J. Coene, A. Thust, M. Op de Beek and D. Van Dyck, Ultramicroscopy, 64 (1996) 109
[4] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35(2), (1972) 237-246.